

MODELLING THE REBOUND EFFECT IN PANTA RHEI

Inforum Conference, September 2019, Sochi, Russia

Maximilian Banning, Lara Ahmann, Markus Flaute, Christian Lutz

Bundesministerium für Bildung und Forschung

Definition: "[...] some or all of the expected reductions in energy consumption as a result of energy efficiency improvements are offset by an increasing demand for energy services [...]"

Barker et al. 2008: The Macroeconomic Rebound Effect and the UK Economy

- Straight forward example:
 - ⇒ 10 % increase in energy efficiency
 - ⇒ 6 % decrease in energy consumption
 - ⇒ 40 % rebound effect

Project and motivation

- ReCap project (<u>https://www.macro-rebounds.org/english/</u>)
 - Reconsidering the Role of Energy and Resource Productivity for Economic Growth, and Developing Policy Options for Capping Macro-Level Rebound Effects
 - ⇒ Three year project funded by BMBF as part of FONA
 - ⇒ Partners: IÖW Berlin (lead), University of Göttingen
- The problem: energy consumption is declining less than expected
 - ⇒ Have rebound effects been neglected?
 - ⇒ What are magnitude and drivers of rebounds?
 - ⇒ How to model and address them?

The problem

Target of the German Energy Concept:

Reduction of the primary energy consumption by 20% until 2020

* preliminary figures

** Targets of the Energy Concept and the German Sustainable Development Strategy: Reduction of the primary energy consumption by 20 % until 2020 and by 50 % until 2050 (base year 2008) Source: German Federal Environment Agency on basis of the Working Group on Energy Balances (AGEB), Evaluation Tables on the Energy Balance for Germany 1990 to 2017, as of 07/2018; for 2016/2017 -AGEB: Primary energy consumption, as of 12/2018

Source: Umweltbundesamt

Rebound definition in ReCap

Only part of rebound effects considered in PANTA RHEI

Literature on modelling rebounds

- Broad range of macroeconomic models for various uses
 - ⇒ Rebounds are just sometimes considered explicitly
 - ⇒ Rebounds and policies are rarely modelled together
- Four models examining the macro-rebound screened in detail

Model Type	Publication of Choice	Size of the Rebound Effect
Macroeconomic (growth) Model	Saunders (2000)	n.a.
Computable general equilibrium model	Allan et al. (2007)	55-62% short term 27-31% long term
	Koesler et al. (2016)	47-55% depending on scope and scenario
Macroeconometric Model	Barker et al. (2008)	11% (Macro) + 15% (Micro) = 26%

Modelling rebounds in PANTA RHEI

► PANTA RHEI:

- Macroeconometric energy and environmental national model (INFORUM type, similar to E3ME)
- Parameters econometrically derived from historical time series, no neoclassical general equilibrium
- Based on official statistics (SNA, time series of IOT)
- Bottom-up (63 sectors)
- Fully interdependent
- Energy balance systematic
- Open for expert information/input from bottom-up models
- **Net impacts** (direct, indirect, induced effects)
- Comparison of models results for different scenarios: Energy efficiency increase or energy policy compared to Reference

The Rebound Channel in Panta Rhei

- 1. Autonomous increase in energy efficiency in industry (or in transport or housing): +10% in manufacturing from 2021 on
- Final Energy Demand (Variable eevb) decreases by 10% of its 2021 value from 2021 onwards in all sectors belonging to manufacturing via fix

- Lower electricity prices due to lower demand: exogenous assumption as the most expensive power plant in Germany or neighbour countries sets the price Wholesale price: -1 €Cent/kWh from 2021 onwards
- reduction of epstromhh[1] by 1 (procurement component of electricity price for households) via fix
- 3. Higher private consumption due to higher income and lower (energy) prices
- Creation of a variable representing the hypothetical real income gain, used to calculate a higher cpvr (final consumption of households in real terms)

The Rebound Channel in Panta Rhei

- (Additional) Investment in more energy-efficient production in industry (25 BN € in 2021 according to another study)
- irsr (equipment investment, various elements) and ibsr (building investment, by energy supply) are raised

- 5. Higher exports due to lower production costs (export prices): price elasticity of exports 5 (instead of 1)
- exn (Exports) modified by multiples of the resulting delta from previous scenarios

Schematic overview

Rebound effects – first results

Model based calculation of the rebound:

$$1 - \frac{\Delta eevb_{scenario x}}{\Delta eevb_{initial fix}}$$

- Rebound effects due to autonomous increase in energy efficiency are low in PANTA RHEI
 - ⇒ Parameters of behavioural equations are estimated econometrically (are they too low in the long term?)
 - Less optimistic about substitution possibilities (elasticities) than neoclassical CGE models
 - Macroeconomic/sectoral approach does not cover all rebounds (on micro level/international level)
- Model adjustment
 - ⇒ Elasticities for industry from ex-post estimations (using very detailed cost structure data from German manufacturing)
 - ⇒ Sensitivity analyses

- Main research interest is in policies to reduce rebound effects (not in modelling rebounds)
- Implementing different policy sets in the model and compare macroeconomic effects
 - ⇒ Current policy
 - ⇒ Prices (taxes, caps, market-based instruments)
 - ➡ Regulation
 - ⇒ Policy mixes and rebound-proof policies
- Develop/evaluate rebound-proof policies with stakeholders and also discuss model characteristics such as elasticities

CONTACT PERSON

Thank you for your attention.

Maximilian Banning

T +49 (0) 541 40933 - 286 E banning@gws-os.com Division Energy & Climate

Literature

- Allan, Grant; Hanley, Nick; McGregor, Peter; Swales, Kim; Turner, Karen (2007a): The impact of an increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom, in Energy Economics 29, 779-798.
- Barker, Terry; Foxon, Tim (2008): The Macroeconomic Rebound Effect and the UK Economy – Research Report.
- Koesler, Simon; Swales, Kim; Turner, Karen (2016): International spillover and rebound effects from an increased energy efficiency in Germany, in Energy Economics 54, 444-452.
- Saunders, Harry D. (2000): A view from the macro side: rebound, backfire and Khazzoom-Brookes, in Energy Policy 28, 439-449.
- Lange, S.; Banning, M.; Berner, A.; Kern, F.; Lutz, C.; Peuckert, J.; Silbersdorff, A. (2019): Economy-Wide Rebound Effects: State of the art, a new taxonomy, policy and research gaps, Arbeitsbericht 1 des Forschungsprojekts ReCap.
- Banning, M., & Lutz, C. (2019). Rebound-Effekte in gesamtwirtschaftlichen Modellen. Ansätze zur Erfassung und Abbildung, Arbeitsbericht 1 des Forschungsprojekts ReCap. Osnabrück.

	Saunders	Allan et al.	Barker et al.	Koesler et al.
Causal shock	Rise in energy productivity by 20%	Rise in energy productivity by 5%	Various policy measures	Rise in energy productivity by 10% (depending on sc.)
Productio n function	Cobb-Douglas	Multi-level production functions (CES, sector specific)	No explicitly stated production funct.; diff. factor demand functions	KLEM (CES, sector/country specific)
Elasticity of subs- titution	1 (between labour, capital, and Energy)	0.3 (between energy and non- energy components)	0.8	Various; between 0.15 and 0.72
Effect on GDP	Short term: +1%-2% Long term: 14% higher	Short t.: +0.11% Long t. +0.17%	+1.26%	- Sc. 1: Germany: +0.13%; ROW: +0%
Rebound effects	Not quantified	 Electricity production: 62% s. t., 27% l. t. Remaining energy prod.: 55% s. t., 31% l. t. 	 Macro rebound (by their definition): 11% Direct rebound: 15% (exogenous) Total rebound: 26% 	- 47% - 57%, depending on scope and scenario

Conclusions from the literature review

- Similar comparisons of a scenario with autonomous increase in energy efficiency with a reference case throughout publications
 - ⇒ Direct effect on the production function
 - ⇒ Private households only indirectly affected
- An exception is Barker et al. modelling explicit policies
- Elasticities along the cause-impact chain are responsible for the size of the rebound effects (in particular SE of energy)
 - ⇒ Need for discussion about the relationship between energy and capital (substitutes vs. complements)
- Although causal shocks (increase in energy efficiency) are largely the same, results differ significantly
- High(er) rebound effects in CGE models

How to model rebounds in PANTA RHEI?

Rebound effects – first results

- Model based calculation of the rebound:
 - ⇒ Delta(eevb(scenario)) / delta(eevb(fix))

Rebound effects – first results

Model based calculation of the rebound:

$$1 - \frac{\Delta eevb_{scenario}}{\Delta eevb_{fix}}$$

