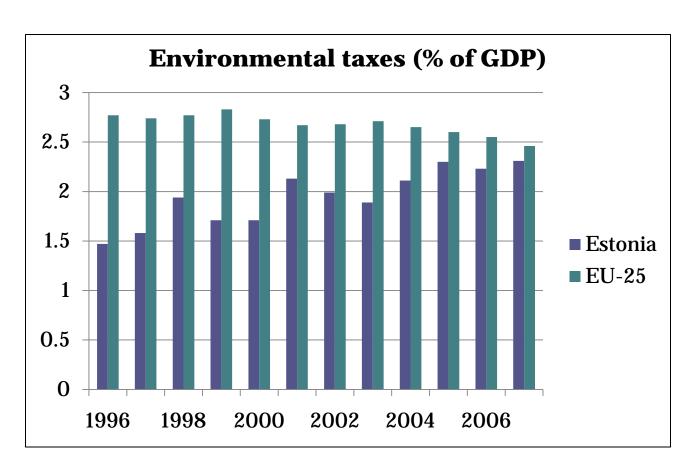
The indirect price effect of environmental taxes: the case of Estonia

Helen Poltimäe, Tiiu Paas University of Tartu INFORUM 8.09.2009


Background

- Environmental taxes as a popular instrument to tackle environmental problems
- Opposition to environmental taxes:
 - Fear of reduced competitiveness
 - Bigger effect on low-income households
- Different models to study different effects
 - For distributional effects: microsimulation
 - As this does not capture indirect effect, other methods have to be included, most often I-O table

Estonian environmental taxes - 1

- Energy intensity of Estonian economy is very high, exceeding the EU-27 average by more than four times
- Ecological tax reform was initiated in 2005
- Raise of existing taxes and new taxes are to be imposed
- Distributional effects are studied by Poltimäe & Võrk (2008), but do not cover indirect effect

Estonian environmental taxes - 2

Estonian environmental taxes - 3

Fuel excise

- forms 98% of environmental tax revenues (4.3 billion EEK in 2007)
- mostly motor fuels are taxed

Resource & pollution charges are also used

- levied on enterprises for resource use (water, forest, mineral resources) and pollution (air, water, waste)
- 0.84 billion EEK in 2007
- managed by Ministry of the Environment
- detailed data not available and therefore not covered in this paper

Objective of the paper

- To assess the effect of Estonian environmental taxes on the price of goods
- Input-Output table
- Aggregation level is high, therefore only price effects are assessed, not the distributional effects

Literature overview - 1

- Studies on the indirect effect of environmental taxes have been done in:
 - Canada (Hamilton, Cameron 1994)
 - Great Britain (Symons et al 1994)
 - Australia (Cornwell, Creedy 1996)
 - Spain (Labandeira, Labeaga 1999)
 - Denmark (Wier et al 2005)
 - the Netherlands (Kerkhof et al 2008)

Literature overview - 2

- Studies deal with hypothetical carbon tax
- I-O table to assess the effect on prices
- Results are different:
 - different tax level
 - different aggregation level
- Most of the studies find carbon tax being regressive

Data and the model

- Fuel use by sectors (2007) 18 sectors
- Fuel excise rates (2007)
- Input-output table of Estonian economy (2000)
 - 58 sectors

$$TAX^{indirect} = T(I - A)^{-1}$$

Results - 1

Sector	Share of fuel excise in output
	(%)
Agriculture and fishing	3.55
Energy	1.94
Mining industry	7.12
Food- and tobacco industry	1.54
Textile and leather industry	0.68
Wood industry	2.45
Paper and printing industry	1.03
Construction	4.31
Land and rail transport	9.00
Water transport	4.87
Air transport	8.00

Results - 2

- Fuels used by energy sector are not taxed by fuel excise: oil shale, wood, peat not taxed, natural gas taxed since 2008
- Energy sector pais CO₂ pollution charge
- Significant tax changes in 2008, but no data yet to analyse

Conclusions

- Pecularities of Estonian tax system hamper environmental tax burden analysis
- Due to the smallness of Estonia, I-O table is very highly aggregated
- Few enterprises in one sector: changes in technology or structural change alters I-O table significantly
- Also behavioral effects need to be considered

Thank you!