Chioms: An Input-Output Modeling System Dynamics

Douglas Nyhus INFORUM University of Maryland September, 2006

Chioms

General Features

- Dynamic forecasting model 1997-2025
 Current Prices
- Guided by MUDAN (national model)
- 29 of 31 provinces (Tibet and Hainan omitted)
- 33 industries

General Features Continued

- Prices are exogenous from MUDAN
- Bilateral Inter-provincial exports and imports by sector
- Four categories of final demand: households, government, fixed investment, inventory change
- Four categories of value added: depreciation, wages, taxes, surplus

General Features continued

- Consistent data base with provincial accounts (old) for 1997
- Nearly * consistent with reported foreign exports and imports from yearbood

* Except for Beijing and Fujian

Chioms

Central equation

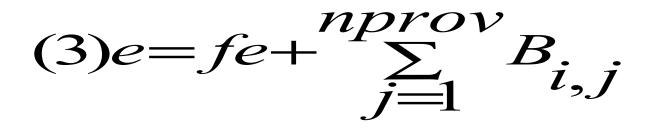
(1) q = Aq + f + e - m

where

q is a vector (all vectors are of length 33) of domestic regional production, A is a matrix of direct input-output coefficients

f, e and m are defined below.

Domestic Final Demand


(2) f = hhc + g + v + vc

where

hhc is a vector of household consumption g is vector of government consumption v is a vector of investment and vc is a vector of inventory change.

Exports

Where

fe is foreign exports

B is a matrix of inter provincial exports

Imports

$(4)m = fm + \sum_{i=1}^{nprov} B_{i,j}$

Where

fm is foreign imports

B is a matrix of inter provincial exports

Household Consumption

- Total estimated on a provincial per capita basis
 MUDAN national per capita
- Provincial Income: wages plus a portion of profits
- The portion of profits is the determined is the same for all provinces and determined by the national portion
- Based upon data from 1995-2002

Household consumption cont'd

(5) $\ln hhcpc = a_0 + a_1 \ln nathhcpc + a_2 \ln provinc$

Where

In hhcpc is the log of provincial per capita consumption; In nathhcpc is the log of national per capita consumption; In provinc is log of sum of provincial wages and portion of provincial surplus; the coefficient on ln natthhcpc is constrained to be approximately .5.

<u>NFORUM</u>.

Investment

- Log function of national investment, provincial GDP
- Coefficient on national investment constrained to .3

Inventory Change

Simple equation in which inventory change represents the closure amount from the actual stock of inventories to a desired level

Growth rate is estimated relative to that of the national government growth

Employment/productivity

Exogenous productivity trends from MUDAN applied as movers to provincial 1997 levels

Wages

Wage rates exogenously obtained from MUDAN applied to provincial employment to yield wages by sector

Depreciation

Function of the estimated capital stock (total)

Taxes

- Provincial tax rates to move (as levels) as the national tax rate of the corresponding national sector
- Tax rates are then multiplied by output to obtain levels of provincial taxes

Surplus

Computed as a residual

- Output less intermediate inputs, wages, taxes and depreciation
- Surplus rates determined as surplus/output

Imports

Most complicated portion of the model

Two parts: foreign and domestic

- Computed as a share of domestic demand (imports/(output+imports-exports)
- Sum of the two parts constrained

0 < sum < 1.

Foreign Share moves like that of national imports

Domestic Imports - share

- Domestic share a function relative profitability of the product in the province
- and the perceived distance of other provincial suppliers
- Thus as the profit rate (surplus/output) rises the domestic import share falls and
- As the perceived distance from other provinces falls the domestic share increases
- Share elasticities are currently arbitrary

Domestic Imports – Perceived Distance

Share depends on the percentage *change* in the perceived distance

Leaving aside sector subscripts the perceived distance, pd, is defined as follows where S is the share matrix corresponding to B and D is a matrix of distances between provinces i and j (measured in hours).

$$(6)pd = \sum_{i=1}^{nprov} S_{i,j} * D_{i,j}$$

Chioms

Changes to Distance

- Exogenous factors such as new or faster highways, railways, canals, new airport facilities, etc
- Endogenous factors include extremely rapid growth relative to history and the national economy

Imports Concluded

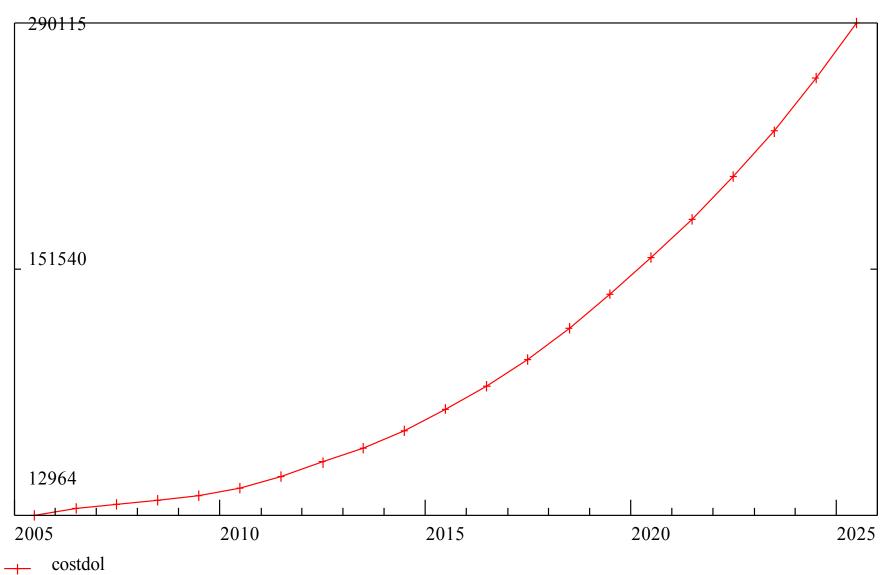
- Foreign and domestic import share are combined and domestic output and total imports are computed
- Imports are then separated into foreign and domestic
- Domestic imports are then used to compute the B matrices of the domestic export functions

Exports

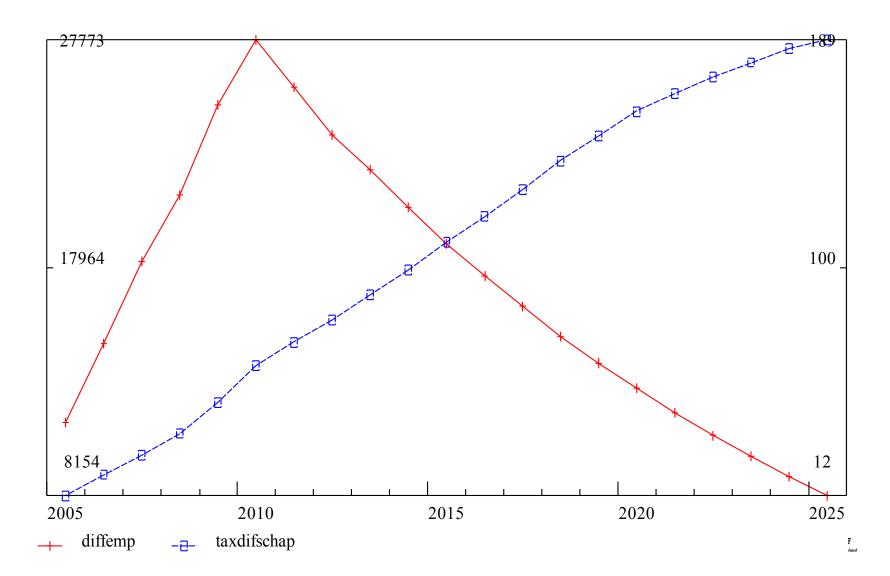
- Domestic Exports computed from domestic imports of other provinces and S matrices
- Foreign exports begin with the 1997 share by province of total foreign exports
- Total foreign exports move exactly as national (MUDAN) exports
- Provinces share of foreign exports changes as its relative (to other provinces) profitability changes

Three Experiments

- Subsidize apparel industry in Sichuan—how much does it cost per job and how many jobs are generated with taxes increased in Guangdong
- Alter national government expenditure to include infrastructure development in western provinces to reduce travel time
- Change tax structure by taxing rich coastal provinces and lower taxes in the west (combined with infrastructure development)


Sichuan's Share of Imports of other Province's Apparel Imports

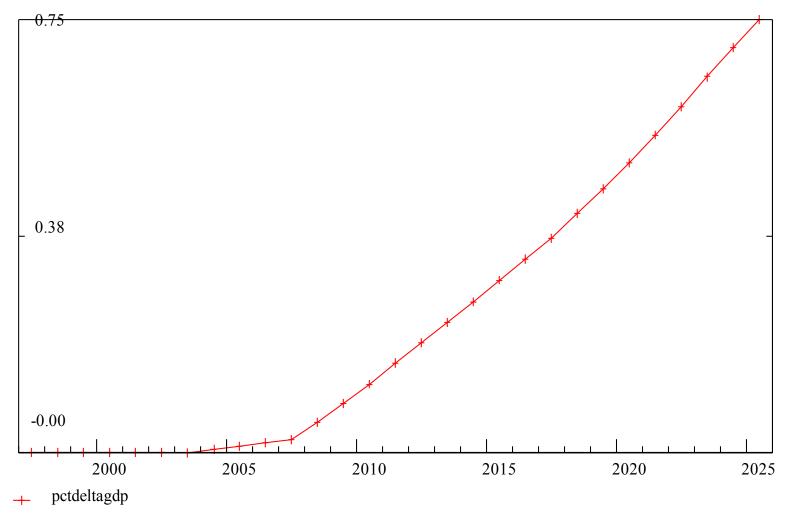
Apparel Subsidy - compensating tax changes GDG		2004	2010	2025	2004- 2010
Sichuan Tax rate		0.04	-0.1	0.01	Percent
					Change
4	Shanxi	0.0006	0.0008	0.0007	33.3
5	IMAR	0.0011	0.0014	0.0013	27.3
22	Chongqing	0.0156	0.0201	0.0183	28.8
19	Guangdong	0.0004	0.0005	0.0005	25.0
29	Qinghai	0.0022	0.0028	0.0025	27.3
30	Ningxia	0.0022 Chior	0.0029 ns	0.0026	31.8



Cost per job in Sichuan

Apparel subsidies in US\$

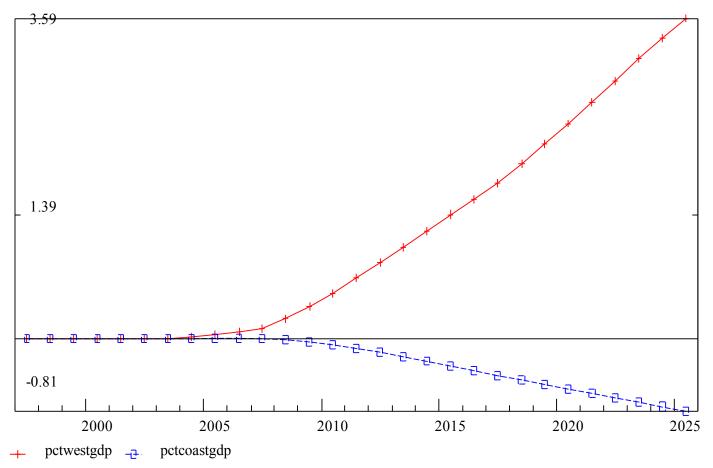
Jobs vs Tax loss


Change in Distance in Hours

	Beijing	Chongqing	Sichuan	Guizhou	Yunnan
Sichuan	-2.85	-2.85	0	-6.3	-5.7
Guizhou	-3.45	-3.45	-6.3	0	-6.3
Yunnan	-2.85	-2.85	-5.7	-6.3	0

Percent Changes in total GDP

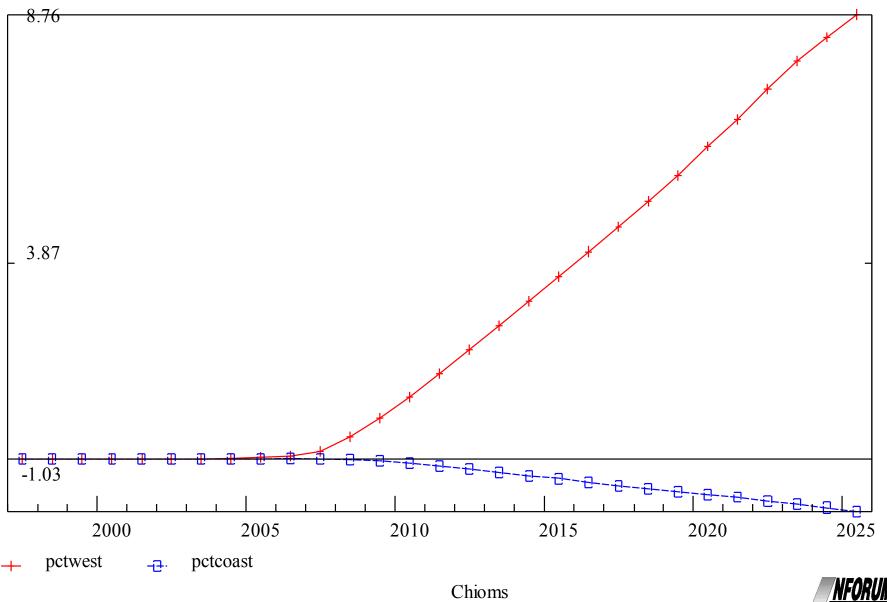
Percent Change



Chioms

Percent Changes in GDP

West and Coast



Chioms

Western Provinces Total Exports

Percent Change

Interindustry Forecasting at the University of Maryland