
XI'th Inforum World Conference 
Suzdal, Russia 

8-12 September 2003 
 
 
 
 
 
 
 
 
 
 

Input-output Structural Decomposition 
Analysis 

of Energy Related Air Emissions  
in Denmark 1980-2001 

 
 
 

Peter Rørmose 
Statistics Denmark 



Contents 
1. INTRODUCTION ..........................................................................................................3 

2. AIR EMISSION ACCOUNTS IN DENMARK, NAMEA...............................4 

2.1 ENERGY CONSUMPTION .....................................................................................................4 
2.1.1 Emission factors ........................................................................................................4 
2.1.2. Balancing of SO2 and NOx in energy and transformation industries.......................5 
2.1.3 Car system .................................................................................................................5 

2.2 AIR EMISSIONS ..................................................................................................................6 

3. INPUT-OUTPUT AND NATIONAL ACCOUNTS DATA.............................8 

3.1. INPUT-OUTPUT TABLES AND MODEL .................................................................................8 
3.2. IMPORT .............................................................................................................................9 
3.3. AGGREGATION LEVEL.......................................................................................................9 
3.4. FROM TABLES TO MODEL ................................................................................................10 
3.5. A USABLE MODEL ...........................................................................................................11 
3.6. AIR EMISSION DATA ........................................................................................................12 
3.7. ENERGY BALANCES.........................................................................................................12 
3.8. GROSS- OR DIRECT ENERGY METHOD..............................................................................12 
3.9. ELECTRICITY TRADE .......................................................................................................12 
3.10. EMISSIONS AND EMISSION COEFFICIENTS ......................................................................13 
3.11. ENVIRONMENTAL EXTENSION OF THE I/O MODEL..........................................................13 

4. METHODOLOGICAL CONSIDERATIONS...................................................13 

4.1. IDA METHOD..................................................................................................................13 
4.2. BASIC COMPARISON OF IDA AND SDA...........................................................................14 
4.3. SDA DECOMPOSITION ANALYSIS – THEORETICAL BACKGROUND....................................15 

4.3.1 Derivation of estimating equations .........................................................................19 
4.4 CONCLUSION ...................................................................................................................25 

5. SETTING UP DANISH DECOMPOSITION ANALYSES ..........................25 

5.1. BASIC MODEL .................................................................................................................26 
5.2. A FINAL DEMAND VARIANT.............................................................................................28 
5.3. DIRECT EMISSIONS FROM HOUSEHOLDS ..........................................................................29 

6. RESULTS ........................................................................................................................30 

6.1. EMISSIONS FROM INDUSTRIES, GENERAL RESULTS ..........................................................30 
6.2 EMISSIONS FROM HOUSEHOLDS .......................................................................................33 
6.3. DISAGGREGATED RESULTS FOR INDUSTRIES ...................................................................34 
6.4. FINAL DEMAND...............................................................................................................37 
6.5. MORE RESULTS ...............................................................................................................37 

REFERENCES...................................................................................................................38 

-     - 2



1. Introduction 
 
This paper1 presents analyses of air-emissions related to the use of energy in Denmark 1980-
2001. It is based on the newly constructed time series 1980 – 2001 of Danish CO2, SO2 and 
NOx air emissions. The time series, which initially will be introduced briefly, is an integrated 
part of the Danish NAMEA (National Accounting Matrix including Environmental 
Accounts)2 accounts.  
 
The new time series replace the time series for 1980-1992, which was based on the 
classification of the "old" (before the SNA 95 revision) national accounts (described in Jensen 
& Pedersen, 1998), and the time series for 1990-1999, which follows the existing national 
accounts. The new emissions accounts include the most recent information on emissions 
factors from the Danish CORINAIR database from the Danish National Environmental 
Research Institute. This up-to-date information has formed the basis for the estimation of the 
entire time series in order to ensure consistency and comparability over time. Thus, with the 
time series a basis for analysing and modelling the trends in the air emissions - especially the 
longer-term developments - exists.  
 
A huge part of man-made emissions of CO2, NOx and SO2 is related to the combustion of 
energy. The combustion takes place as a response to the demand for energy, which is 
dependent of the size and structure of the economy, and is determined in an interaction 
between the various sectors on the basis of prices, legislation and so on. Together with the 
many technical possibilities for producing and distributing energy it forms a complex chain of 
different driving forces behind the emissions to air. In order to get a good understanding of 
the historical changes in the emissions as a tool in the process of planning a more sustainable 
economy, it can be very useful to be able to separate these driving forces into individual 
components. For such a purpose decomposition analysis is a strong tool that can reveal the 
underlying factors. In the paper it is shown how the NAMEA air emissions accounts can be 
used for decomposition analysis of the development in air emissions. An introduction to the 
different methodologies for decomposition is given. 
 
Decomposition analysis is a way to ascribe the change in a variable of interest to the sum of 
changes in a number of other variables. Following the description of the input-output based 
techniques of decomposition analysis, a set of specific Danish decomposition models is 
presented. The 1980-2001 time series of emissions and other energy related matrices and 
vectors are combined with the corresponding Danish (130 x 130 industry) input-output tables 
and finaldemand tables.  

                                                 
1 The work on analysis of changes in air emissions in Denmark has benefited from a grant from the Commission of the 

European Communities (DG Eurostat/B1 Grant agreement nr. 200141200007). 
2 The conceptual framework for the NAMEA air emissions accounts is described in detail in NAMEA for Air Emissions - 

Compilation Guide (EUROSTAT, 2003). 
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2. Air Emission Accounts in Denmark, NAMEA 
 

2.1 Energy consumption 
 
The main source to the energy related emissions is Statistics Denmark's energy matrices. The 
energy matrices consist, at their most detailed level, of 40 different types of energy distributed 
to production and imports on the one hand, and stocks, consumption in households and 130 
industries, exports and losses on the other hand. The energy matrices are made up in different 
units. In addition to the physical amounts the energy matrices are also calculated as heating 
values, both gross- and direct energy consumption, monetary values and energy-, CO2- and 
SO2-taxes. 
 
The energy matrices contain primary as well as refined and converted types of energy. In 
relation to the estimation of the emissions it is only the use of primary energy (except crude 
oil and refinery feed stocks), refined petroleum products and renewable energy (except wind 
and water power), on which the calculations are based. Consumption of converted types of 
energy such as electricity and district heat do not cause emissions in it self, i.e. it is only the 
primary energy used to produce these kinds of energy that the emissions in the NAMEA 
system includes. 
 
 
Table 2.1 Total energy consumption causing air emissions 1980 - 2001 

 1980 1985 1990 1995 2000 2001 

   PJ 
Total energy consumption 902 854 827 968 1 020 1 019 
   
Energy consumption 805 788 709 828 778 795 
Danish ships bunkering 
abroad 

 
97 66 118 140 243

 
224 

 
 
The energy matrices and, thus, the emissions accounts are consistent with the national 
accounts. Because the energy matrices are based on the same delimitations and classification 
of industries as the national account it is thus possible to relate the physical quantities of 
energy consumption and emissions with the economic activity in the industries. It is however 
important to notice that the fuel bunkered by Danish ships abroad is not a part of the energy 
matrices even though the economic activity caused by the ships sailing abroad is accounted 
for in the Danish national accounts. Therefore the emissions from Danish ships bunkering 
abroad have to be handled separately. See section 2.2. 
 
The information on the energy consumption in heating values in all the industries and 
households is used to calculate the energy related emissions of CO2, SO2 and NOx. This is 
done by the formula energy consumption times a specific emission factor, i.e. emission per 
energy consumption, connected to the use of a specific type of energy in a specific industry or 
the households. 
 

2.1.1 Emission factors 
In determining the air emissions it is important to get the emission factors right. The emission 
factors reflect the technology used for the combustion of the fossil fuels. The emission factors 
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used in the Danish NAMEA system are obtained from the Danish National Environmental 
Research Institute (NERI). The emission factors thus generally correspond to the factors 
available in the CORINAIR (COoRdination of Information on AIR emissions) database. The 
emission factors from NERI are all connected to technical conditions, e.g. size and type of 
combustion plants. In order for Statistics Denmark to use those emission factors, it has been 
necessary to allocate and to some extent assume which 130 industries use what kind of 
combustion plants. Thus, Statistics Denmark creates for each year a matrix with the same 
dimension as the energy matrices containing the associated emissions factors obtained from 
NERI. 
 
During the time from 1980 to 2001 some changes in the emission factors have occurred. 
These changes have mainly been due to changes in combustion technology and legislation. 
The main changes in the emissions factors for the individual types of energy are summarized 
below. 
 
The emission factors for CO2 remained unchanged for the whole period. 
 
The emission factors for SO2 have generally been falling. The downward tendency has been 
due to legislation about the sulphur content in the various types of energy and demand for 
better cleaning in especially the energy industry. The sulphur content has especially been 
reduced in the types of energy used with transportation purposes, except for Danish ships 
bunkering of fuel abroad.  
 
While the emission factors for NOx were constant during the eighties the emission factors for 
NOx have generally been falling since 1990. This downward tendency has been due to the 
development in technology and legislation, which ensured that all new gasoline cars should 
have a three–way catalytic converter from 1990. Technologies for low-temperature burning of 
fuel in industrial processes, which in theory should reduce NOx emissions by up to 100 pct., 
were installed over the first half of the 1990’s, and have also had an impact on the NOx 
emission factors. The emission factor for Danish ships bunkering abroad has remained almost 
constant.  
 

2.1.2. Balancing of SO2 and NOx in energy and transformation industries 
SO2 and NOx emissions from the power plants and refineries are in the Danish NAMEA 
system based on measured emissions obtained from NERI. NERI collects data on emissions 
measured directly at the power plants and refineries. Statistics Denmark balances the SO2 and 
NOx emissions for that part, which directly are caused by the production of electricity and 
heat or the refining process to the level obtained from NERI, c.f. section 3.3. 
 

2.1.3 Car system 
Emissions from road transport do not only depend on the amount of propellant fuels used but 
also on the type and age of the vehicles in the fleet of cars, e.g. the number and type of 
passenger cars, light and heavy duty vehicles and motorcycles. In order to take into account 
the composition of the fleet of cars in the industries and in the households the information in 
the car system is used. 
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2.2 Air Emissions 
 
Leaving out emissions from Danish ships bunkering abroad the CO2, SO2 and NOx emissions 
have all shown different trends in the period from 1980 to 2001. Whereas SO2 declined 
during the whole period to a level 91 pct. below the level in 1980, NOx have only shown a 
decreasing tendency since 1996. The NOx emission has however fallen to a level 27 pct. 
below the level in 1980. The emission of CO2 increased until 1996 but has since then 
declined, as can be seen in figure 2.1. The CO2 emission was in 2001 6 pct. below the 1980 
level. The trend in the air emissions has occurred even though the energy consumption 
causing the air emissions has only dropped to a level 1 pct. below the level in 1980. The 
economic activity increased in the same period by 50 pct. in terms of growth in GDP in 1995 
prices. 
 
 
Figure 2.1. Energy related emissions excl. of Danish ships bunkering abroad 1980 - 2001 

0

20

40

60

80

100

120

140

1980 1983 1986 1989 1992 1995 1998 2001

CO2 SO2 NOx Energy consumption

Index 1980=100

 
 
 
Below, air emissions broken down by households and 8 industries are presented. The CO2 
emission from households has declined whereas the emission from industries as a whole 
mainly reflects the development in the emission from Electricity, gas and water supply. 
 
Table 2.2. Energy related CO2 emission excl. of Danish ships bunkering abroad 1980 - 
2001 
 1980 1985 1990 1995 2000 2001 

   1000 tonnes  

 Total 65 085 65 157 57 882 66 719 59 281 60 866 
 Households 13 463 12 507 10 796 11 539 10 518 10 933 
 Total industries 51 622 52 650 47 086 55 180 48 764 49 933 

1 Agriculture, fishing and quarrying 3 280 3 550 3 891 4 196 4 794 4 825 
2 Manufacturing 8 921 7 793 7 090 7 835 7 291 7 208 
3 Electricity, gas and water supply 30 801 32 565 27 083 33 616 26 639 28 079 
4 Construction 685 787 833 947 1 067 1 094 
5 Wholesale and retail trade; hotels, 

restaurants 
2 231 1 945 1 449 1 404 1 389 1 313 

6 Transport, storage and communication 4 181 4 515 5 258 5 782 5 988 5 953 
7 Financial intermediation, business 

activities 
337 357 390 355 462  439 

8 Public and personal services 1 187 1 138 1 092 1 046 1 135  1 021 
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The SO2 emission has declined dramatically during the whole period, which, as mentioned 
earlier, has been due to a continuous fall in the sulphur content in the fossil fuels used.  
 
The heavy fall in the SO2 emission from Electricity, gas and water supply has been due to 
better purification whereas the reduction in the other industries has been caused by the 
reduced sulphur content in the fossil fuels used. Especially the industries wholesale and retail 
trade, hotels, restaurants and Public and personal services have reduced their emissions of 
SO2. 
 
Table 2.3. Energy related SO2 emission excl. of Danish ships bunkering abroad 1980 - 
2001 
 1980 1985 1990 1995 2000 2001 

   Tonnes  

 Total 442 
102 

340 
066 

191 
612 

151 
428 

 41 
758 

  40 
146 

 Households  32 
981 

 25 
813 

   7 
403 

   5 
137 

   1 
495 

    1 
599 

 Total industries 409
122 

314 
253 

184 
208 

146 
291 

 40 
263 

  38 
547 

1 Agriculture, fishing and quarrying  20 
154 

 14 
252 

 11 
045 

   7 
213 

   3 
065 

    3 
086 

2 Manufacturing  80 
654 

 61 
099 

 27 
516 

 20 
413 

13 364   13 
527 

3 Electricity, gas and water supply 275 
777  

205 
618 

125 
793 

106 
156 

 12 
354 

  10 
462 

4 Construction    2 
381 

   2 
719 

   1 
289 640 152 

 
156 

5 Wholesale and retail trade; hotels, 
restaurants 

 10 
131 

   8 
831 

   1 
380 592 100 

 
78 

6 Transport, storage and communication  12 
595 

 14 
663 

 15 
666 

 10 
605 

 10 
715 

  11 
000 

7 Financial intermediation, business 
activities 

   1 
679 

   1 
683 366 131 100 

 
52 

8 Public and personal services    5 
752 

   5 
389 

   1 
154 541 414 

 
186 

 
 
Table 2.4. Energy related NOx emission excl. of Danish ships bunkering abroad 1980 - 
2001 
 1980 1985 1990 1995 2000 2001 

   Tonnes  

 Total 315 
888 

326 
090 

300 
957 

300 
270 

232 
218 

230 
059 

 Households  78 
887 

 74 
456 

 69 
874 

 61 
101 

 49 
231 

  48 
319 

 Total industries 237 
001 

251 
634 

231 
083 

239 
169 

182 
987 

181 
740 

1 Agriculture, fishing and quarrying  33 
558 

 33 
994 

 39 
542 

41 235  45 
942 

  47 
134 

2 Manufacturing  18 
765 

 18 
257 

 16 
263 

 17 
378 

 11 
972 

  11 
901 

3 Electricity, gas and water supply 111 
847 

120 
036 

 92 
329 

 84 
840 

 45 
358 

  45 
166 

4 Construction    8 
785 

 10 
126 

   8 
415 

 10 
904 

 11 
334 

  11 
746 

5 Wholesale and retail trade; hotels, 
restaurants 

 13 
448 

 12 
661 

 10 
666 

   9 
869 

   7 
571 

    6 
876 

6 Transport, storage and communication  41  46  55  64  53   51 
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188 035 058 952 228 502 
7 Financial intermediation, business 

activities 
   1 
872 

   2 
184 

   2 
342 

   2 
122 

   2 
233 

    2 
068 

8 Public and personal services    7 
538 

   8 
342 

   6 
469 

   7 
869 

   5 
350 

    5 
348 

 
 
The fall in the NOx emissions has been primarily in the Electricity, gas and water supply and 
from the industries and households use of propellant fuels to road transport. The increase in 
the NOx emissions in agriculture, fishing and quarrying has been primarily in agriculture and 
quarrying. In agriculture an increasing consumption of gas oil has caused the increase in 
emissions whereas the increase in quarrying has been caused by an increase in the oil 
companies own consumption of natural gas in relation to the extraction of crude petroleum 
and natural gas. 
 
Statistics Denmark has for the period 1966 - 2001 estimated the amount of fuel oil bunkered 
by Danish ships abroad. Emissions from this energy consumption are also a part of the 
NAMEA air emissions accounts. The amount of fuel oil bunkered by Danish ships abroad is 
based on financial information from the shipping industry combined with information on fuel 
oil prices. 
 
As can be seen by comparing table 2.5 with previous tables, the emissions from Danish ships 
bunkering abroad make up a considerable part of the Danish NAMEA type air emissions total. 
 
Table 2.5. Emissions from Danish ships bunkering abroad 1980 - 2001 
 1980 1985 1990 1995 2000 2001 
CO2 1000 tonnes 7 552 5 130 9 176 10 947 18 951 17 489 
SO2 Tonnes 167 791 113 981 201 290 226 524 398 950 383 416 
NOx Tonnes 208 456 141 605 250 230 298 524 516 788 476 916 
 

3. Input-output and National Accounts Data 
 
One of the primary sources of data for a structural decomposition analysis is the input-output 
(i/o) model. So in the following section the Danish i/o tables and i/o model is described in 
some detail. Furthermore, a brief overview is given of the data on energy consumption, and 
emission coefficients that were already described in details in section 2 of this report.  
 

3.1. Input-output tables and model 
 
The Danish i/o tables are a coherent assembly of a fair amount of the most important national 
accounts statistics. They give a detailed description of the production structure and the use of 
goods and services in the economy. The supply side as well as the demand side are described 
in detail and linked together in a system of bookkeeping identities, which is fully consistent 
with the National Accounts. Thus, the input output tables comprise the same 130 industries as 
the national accounts do at its most disaggregated level. 107 categories of final demand are 
also included in the input-output tables.   
 
The tables describes the amounts of goods and services that industries demand in order to 
produce and the amounts of goods and services that are demanded for final demand i.e, the 
subgroups; private consumption, government consumption, investment, changes in 
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inventories, imputed financial intermediaries and export. In a schematic, fully aggregated 
form it can be described in the following way 
 
Table 3.1. The structure of the Danish i/o tables.  
 Intermediate 

input 
1 .. 130 

Final demand 
 

1 .. 107 

Total 

1 
Danish production     ... 

130 

 
Xg

 
Fg

 
g 

1 
Imports                      ... 

130 

 
Xm

 
Fm

 
m 

1 
Primary factors         … 

5 

 
S 

 
Sf 

 

 
s 

Total g’ f’  
 
Note: All figures in this table is in 1000 DKK.  Both current price tables and tables in fixed 1995 prices are available. 
 
Total output g amounts to intermediate goods and services produced in Denmark plus final 
demand of goods and services produced in Denmark (row sums of Xg and Fg). We also notice 
the fundamental identity that total output g is equal to total value of inputs g’. The matrix Xg 
describes the amount of intermediate goods and services every industry purchases from it self 
and from other Danish industries. The matrix Fg describes the deliveries of goods and services 
to final demand from Danish industries. Similarly, total imports m is distributed between 
intermediate input and final demand. Primary factors S consist mainly of input of labour and 
capital, but also subsidies and direct and indirect taxes are found here. The column-sums of 
the primary factors matrix S are the gross value added in each of the 130 industries. The 
matrix Sf is VAT and other taxes and subsidies. The level of total demand by category is 
described by the vector f’.  
 

3.2. Import 
 
The import to Denmark is known at the level of 2750 goods and services. They are aggregated 
to the 130-industry level in the same relative way as the domestically produced goods and 
services are distributed. If something is imported which is not produced in Denmark, it is 
assigned an industry code according to its character. A few special categories of import, 
which cannot be assigned to an existing product or industry, are put in a group of “non-
distributable foreign transactions”. This import is carried in a 5 by 130 matrix of deliveries to 
input in production and a 130 by 107 matrix of deliveries to final demand. These additional 
import matrices are now shown in table 3.1 above in order not to confuse the general picture 
too much. As the import Xm and Fm is classified in the same way as the Danish production 
and final demand Xg and Fg the two sets can be added to get X = Xg + Xm for the intermediate 
input and F = Fg + Fm for the final demand. If the equivalence between row- and column-
sums is to be maintained, the vector -m should be added among the final demand components 
in F.   
 

3.3. Aggregation level 
 

-     - 9



The level of aggregation for production as well as imports is 130. There are 73 categories of 
private consumption as well as 21 (only 11 before 1993) categories of government 
consumption and 10 categories of capital formation. Behind these tables, account is being 
kept of about 2500 goods and services in current and fixed prices. They are used for creating 
the current as well as the 1995 fixed price i/o tables. The tables have been constructed for the 
period 1966 to 1999 in both fixed and current prices. 
 
This table is seemingly just statistics. However, it is necessary to impose a number of 
assumptions on the basic data in order to create this set of tables. One of them is that it is 
assumed that every industry produces only one good, or that the goods they produce all are 
produced with the same technology. Another thing is that the homogeneity of prices that can 
be found at the 2500 goods and services level, cannot be maintained at the 130 industry level. 
It is due to the aggregation process. Therefore the price on delivery from one industry varies 
between the different uses of it. 
 
A big advantage of the (Danish) i/o tables is that they can be combined with additional 
systems of data like satellite accounts for the national accounts, in e.g. the fields of labour 
market and environmental statistics. 
 

3.4. From tables to model 
 
For analytical purposes the i/o table give some valuable information. But it is not always 
enough. So in order to getter a better understanding of detailed structural aspects of the 
economy it is advantageous to build the tables together in an i/o model. An i/o model puts the 
i/o tables into a framework of identities, equations and equality conditions and performs 
mathematical operations on it. The model results add information about the structure of the 
economy by retrieving information from the data that cannot be directly observed. 
 
A division of every column in the matrices Xg, Xm and S by the elements in the vector g’ as 
well as a division of every column in the matrices Fg, Fm and Sf by the elements in the vector 
f’ makes the Danish model. The result is the following 
 
Table 3.2. Input output model with endogenous imports 
 Intermediate 

input 
1 … 130 

Final demand 
1 … 107 

1 
Danish production        ... 

130 

 
Ag

 
Eg

1 
Imports                         ... 

130 

 
Am

 
Em

1 
Primary factors             ... 

5 

 
Y 

 
Yf

Total ig’ if’

  
Now, because everything in each column has been divided by its sum, the coefficients sum to 
one in every column. The two identity row vectors at the bottom indicate that. If for instance 
export rises by 1 billion DKK, then the export column in the matrices Eg, Em and Yf will tell 
us the share of this billion that is supplied by the various Danish industries and directly from 
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import. The share of taxes will be paid according to Yf. On the other hand, if one industry 
must produce one billion worth of goods and services, the column of this particular industry 
tell us where all its input will come from, in terms of domestically produced and imported 
intermediate goods, as well as capital and labour. When this particular industry draws on 
other industries, those industries have to increase their production as well, requiring inputs 
from even other industries and so on. It spreads like ripples in a pond, which die out 
gradually. It is called the multiplier effect. 
 
This model is called a model with endogenous import, because it shows all the import 
transactions explicitly. In a model with exogenous import Danish production and imports will 
be added together. In the analysis later on we use both types of model in order to be able to 
compare the results.    
 

3.5. A usable model 
 
In order to do analysis with the model we need to put it on a more usable form. We can write 
the model as  
 
 g = Agg + eg (1) 
 
where the variable names are same as in table 3.2 above, and the only new variable is eg 
which is just a vector of final demand (the row sums of Fg in table 3.1). Here we can regard eg 
as an exogenous variable and determine the production in each industry in Ag as the solution 
to (1) 
 
 g = (I - Ag)-1 ⋅ eg (2) 
 
where I is an identity matrix of the same dimension as Ag. (I - Ag)-1 is called the Leontief 
inverted matrix. This equation shows the value of total production in each of the industries in 
Ag as a linear function of the supply from the same industries to final demand. Final demand 
can enter as a matrix instead of a column  
 
 g = (I - Ag)-1 ⋅ Eg ⋅ f (3) 
 
where f comes from table 3.1 and represents the level of the final demand categories.  
 
 
Thus, each specific element (i,j) in the inverted matrix (I - Ag)-1 shows what one unit 
delivered from industry j to final demand requires of production in industry i. This is the 
multiplier effect previously mentioned; now build into the same matrix. Thus, all the elements 
in the diagonal in the inverted matrix (I - Ag)-1 are equal to or larger than one.  
 
If an assumption is made about the future value of final demand as an exogenous variable, the 
model (3) can be used to forecast total output. In this case the most important assumption is 
that the technical coefficients are constant. There are many reasons why this may not hold. 
First of all movements in technology and prices over time will require shifts in the 
coefficients to adapt to the new situation. This is not very important in relation to this project, 
because we are only concerned with the years covered by statistical data. However, because 
the publication of detailed i/o tables lack behind the publication of more aggregated 
macroeconomic variables we have in the empirical section of this report forecasted the entire 
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table of coefficients a couple of years to catch up with the newest aggregated data. We shall 
come back to that in a little while.  
 
The model (3) can be subject to a decomposition analysis already. In order to explain the 
changes in industry output in the vector g, one would look at the changes in the production 
structure (I - Ag)-1, changes in the structure of the final demand Eg and changes in the level of 
final demand f. These data exist all the way back to 1966 so in principle we can start our 
analysis at that point. The necessary data comes in both current and fixed prices, but here it is 
important to choose the fixed price matrices, because they represent the real physical changes, 
independent of development in prices. But in order to deal with air emissions, this model must 
be extended with an environmental module. Firstly, availability of relevant data is 
investigated. 
 

3.6. Air emission data 
 
In section 2.1 about sources and methods, a description of Danish air emission data is already 
given. Anyway, a brief description of it follows here specially aimed at the data needs in the 
decomposition analysis.   
 

3.7. Energy balances 
 
Statistics Denmark collects and maintains quite large annual databases of energy use 
organized in the so called “energy balances”.  Here input of various energy types are balanced 
with the use of energy. The collection of these data is closely connected with compilation of 
the national accounts in Denmark. They are organised in such a way that they are directly 
compatible with the national accounts at the most detailed industry level. They describe the 
supply and use of energy and come in value units (DKK) as well as physical units (tonnes or 
m3 and joule). They keep account of 40 different energy carriers such as oil, gas, coal, 
gasoline and wood, straw and wind power. 
 

3.8. Gross- or direct energy method 
 
The measurement of supply and use of energy can be based on the so-called “direct energy 
method” as well as the “gross energy method”. According to the direct energy method, the 
full consumption of energy carriers should be reckoned among those who actually use it - first 
of all the conversion sector. This means that the power plants and the district heating facilities 
will be the absolute main polluters. The direct energy method is the basis for analyses in this 
report.  
 

3.9. Electricity trade 
 
To an increasing degree electricity is traded across the Danish borders. Denmark imports 
electricity mainly from Norway and Sweden. For reasons of simplicity it has traditionally 
been assumed that this electricity is produced with the same technology as it had been 
produced in Denmark and thus, have the same pollution consequences as the Danish 
electricity production has. This will also be the attitude in this report, although there is a 
section at the end of the report that reveals, that this is a very erroneous assumption. Because 
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of a lot of emission-free electricity production in Sweden and Norway, the emission 
consequences of the imported electricity are overstated.  
 

3.10. Emissions and emission coefficients 
 
In order to produce statistics for the NAMEA tables on emissions, it is necessary to obtain a 
set of emission coefficients to be multiplied with the data on energy consumption just 
described. This is described in a detailed way earlier in this report. The coefficients 
themselves are not published, but it is possible to derive them implicitly from division of the 
emission matrices by the energy consumption matrices. 
 

3.11. Environmental extension of the i/o model 
 
Thus, because the energy matrices are coherent with the national accounts, it is possible to 
relate energy consumption and emissions with the economic activity at the most detailed 
industry level. I.e. it is possible to relate the development in physical quantities to the 
development in the economic activity. The basic definition of an environmental extension is 
exactly that it relates the basic i/o model with matrices of physical energy consumption and 
emissions 
 
The simplest environmental extension of the i/o model is through a pre-multiplication of the 
model (3) by a vector of “emission intensity” coefficients. Such coefficients would be 
obtained by dividing a vector of emissions by industry by the vector of output by industry.  
Thus, when focus is on CO2 emissions, the environmentally extended model would be 
 
 CO2 = em_int ⋅ (I - Ag)-1 ⋅ Eg  ⋅ f (4) 
 
where, em_int = CO2 /g is the vector of CO2 emission intensity coefficients. This model is 
really a nonsense model in itself, because it just calculates the CO2 emission, which we 
necessarily know in advance in order to calculate the em_int vector. But for a decomposition 
analysis it would be usable, because it has three different factors that all contribute to the total 
emissions. We take a closer look at different decomposition models in section 4.4. But first it 
is necessary to take a closer look at the theory and the methods behind the decomposition 
analyses. 
 

4. Methodological considerations 
 
There are a number of different techniques that can be used for decomposing the development 
in emission indicators at the sectoral level. According to Hoekstra and van den Berg (2003) 
they can be categorized under two general headings; structural decomposition analysis (SDA) 
and index decomposition analysis (IDA)3.  
 

4.1. IDA method 
 

                                                 
3 SDA is a generally accepted name for decomposition studies based on input-output models and data. The name IDA is not as 

generally accepted as SDA, but it is used by Rose and Casler (1996) and adopted in a recent major survey of the area (Ang 
and Zhang, 2000).   
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Index decomposition analysis has been carried out for almost 25 years, most of the time under 
other names than IDA. In the beginning of this period the idea of this method was to 
decompose changes in industrial energy use represented by the aggregated energy intensity by 
changes in industrial production mix and changes in the sectoral energy intensity. The 
formulas used prior to the mid 1980s were quite straightforward. The idea was to compute the 
hypothetical aggregate energy intensity that would have been for a target year if the sectoral 
energy intensities for industrial sectors had remained unchanged at their base year values. The 
impact of structural effects could then be found as the difference between the hypothetical 
aggregate energy intensity in the target year and the actual observed energy intensity in the 
base year. Furthermore, the difference in the hypothetical and the actual aggregate energy 
intensities in the target year were ascribed to changes in sectoral energy intensity. Since then 
the IDA studies have been refined quite a lot. Index theory has been employed to perform 
decomposition analysis in alternative ways by assigning other weights to the base year and the 
target year values. Laspeyres and Divisia index methods has been introduced as the most 
important methods to find such weights. This has been extended with a parametric Divisia 
index method, and differences between additive and multiplicative methods have been 
investigated. For further details about the IDA method please refer to the Ang and Zhang 
(2000) survey.  
 
 
 
 

4.2. Basic comparison of IDA and SDA 
 
The SDA method has many similarities with the IDA method. SDA also looks at the 
difference between a variable at two different points in time - a base year and a target year. It 
ascribes the changes in the variable in question to each member of a set of determinants 
through a decomposition analysis. The major characteristic that distinguishes the SDA 
method from the IDA method is that it is based on input-output models rather than aggregated 
data. The two decomposition methods have developed side-by-side independent of each other 
until very recently. In the literature, research related to IDA has been concerned with 
implications of the index theory and how to specify the decomposition, whereas the study of 
SDA has been more concerned with distinguishing between the effects of a large number of 
determinants. Hoekstra and van den Berg (2003) compare the two methods and transfer 
decomposition techniques between them. 
 
Even if the two methods have a lot in common, there are considerable differences between 
them. First of all the models behind the two techniques are different. The SDA method is 
based on input-output data, while IDA only uses sector level data. It means that the IDA 
method does not require as much data and that it is easier to implement and use. It has made it 
a popular and widely used tool. It is, however, at the expense of the degree of detail in the 
decompositions. Because SDA is based on a larger amount of data and a more complex 
economic model it can distinguish between a variety of technological and final demand 
effects that are not possible to detect in IDA based analysis.   
 
SDA is more advanced in the sense that it includes indirect effects captured by the so-called 
Leontief-inverse of the input-output model. It means that when e.g. a final demand component 
requires deliveries from a sector, then this particular sector requires deliveries from other 
sectors in order to supply what is demanded and so on. This is called the multiplier effect or 
spillover effect. IDA is only capable of measuring the direct effects. 
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It cannot be concluded which of the two concepts is better. It depends on the data at hand and 
of the purpose of the analysis. This report concentrates on the SDA method, because, firstly, 
we have a very detailed data set with annual input-output tables available, and secondly, we 
are interested in as much detail we can get about the determinants behind the changes in air 
emissions in Denmark as possible.  
 

4.3. SDA decomposition analysis – theoretical background 
 
The history of SDA goes back to Leontief and Ford (1972), but traces of it can be found even 
earlier. Carter (1970) analysed changes in input-output tables over time. Skolka began his 
work in the second half of the 1970'es leading up to his frequently cited article Skolka (1989). 
The first well-known Danish contribution is Ploeger (1984). Rose and Casler (1996) carry a 
more thorough review of the history of SDA. 
 
In Rose and Chen (1991) the SDA method was defined as "the analysis of economic change 
by means of a set of comparative static changes in key parameters in an input-output table". A 
number of SDA studies have focused on changes in energy-consumption and changes in 
emissions of CO2 and other air-polluting gases. With the purpose of analysing energy demand 
and emissions, physical data on the environment can be linked to monetary input-output 
tables either through a product of a number of vectors and matrices representing the 
“pollution intensity” or through the method of "hybrid units". The latter method allows for the 
use of monetary as well as physical units in the rows of the input-output tables. This method 
is considered to be theoretically superior to the intensity factor method if product prices are 
not uniform across all uses (Hoekstra and van der Berg, 2002). However, it requires some 
more data-work than the intensity-factor method. Therefore it is more rarely used, but 
examples can be found in Lin and Polenske (1995), Casler and Rose (1998) and Zheng 
(2000).   
 
The first SDA studies published, often employed ad-hoc specification of estimating-equations 
- if equations were presented at all (Rose and Casler, 1996). Since the Rose and Casler (1996) 
survey, a lot of work has been carried out on the theoretical background of SDA, most of 
which is presented in Hoekstra and van den Berg (2002). 
 
Although the estimating equations in SDA studies often is derived in a discrete time 
framework, the theoretical background for SDA as well as for IDA is a continuous time 
functional relationship between a number of variables.  
 
 )  (1) ,...,( 21 nxxxfy =
  
In order to derive the effects of changes in the n determinants on y, equation (1) must be 
differentiated using the total-differentiation method 
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When f is given, dy will depend on x1 , x2 , … xn and the changes in them dx1 , dx2 , … dxn. We 
now introduce Δ, meaning the change in a variable over a discrete period of time. Then, if Δy 
= f(x1 + dx1, x2 + dx2, , … xn + dxn) - f(x1, x2, , … xn) we will normally have that Δy ≈ dy for 
small values of  dx1 , dx2 , … dxn . Using such a discrete time approximation to (2) instead of 
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continuous time means that we are following a tangent hyper-plane instead of the surface of 
the function itself.  
 
This can be illustrated as follows in the case of a two-determinant multiplicative function. 
Assume that we have the function 
 
 1 2y x x= ⋅  (3) 
 
Now there are four possible ways of decomposing this equation, because both sides of the 
equation can be expressed in absolute terms or in relative terms. If we express the left hand 
side in absolute change terms Δy, we can make two additive decompositions, one with the 
right hand side expressed in absolute terms and one with the right hand side expressed in 
relative terms. If the left hand side is expressed in relative terms (yt / yt-1) there are two 
possible multiplicative forms, see Hoekstra and van den Berg (2002) for further details. The 
choice of decomposition form depends on the objective of the analysis. For SDA the adaptive 
version with both sides expressed in absolute terms is by far the most common. It is also the 
one that is used in the rest of this paper. In IDA it is more common to use the relative forms 
 
After differentiation of (3) by the product rule and using the discrete time approximation like 
above we get the additive decomposition form 
 
 2 1 1 2y x x x xΔ = ⋅Δ + ⋅Δ  (4) 
 
Thus, (3) can be decomposed into two parts that depend on the changes in x1 and x2. However 
the choice of weights (here x2 and x1) is a very fundamental question, because if we try to 
rewrite (4) in continous time, the identity is not necessarily fulfilled any more. The choice of 
weights is synonymous with the choice of index. We remember that the Laspeyres index 
means that we use basic year values as weights, while in the Paasche index we use the 
previous year values as weights. Finally in the Marshall-Edgeworth index we use an average 
of the two as our weights. 
 
Liu et al. (1992) show that under certain conditions the discrete approximation of a 
continuous integral function of Δy can be represented by the parametric equation 
 
 1 1 1 1 2 2 2( ( 1) ) ( ( 1) ) 2y w t w x w t w xα αΔ ≈  (5) − + ⋅Δ ⋅Δ + − + ⋅Δ Δ
 
where the w's are weights (that could be x1 and x2) and the ∀'s are parameters. The sizes of the 
weights are determined by their value in period t-1 and t and the parameter ∀. The choice of 
the ∀'s determines which index is used. If ∀ is equal to one, only w1(t) and w2(t) are used as 
weights. Thus, we are dealing with the Paasche index. If ∀ is equal to zero, only w1(t-1) and 
w2(t-1) are applied like in the Laspeyres index. Finally if ∀ is equal to 0.5, we are dealing with 
the Marshall-Edgeworth index; 0.5⋅w1(t-1) + 0.5⋅w1(t) and 0.5⋅w2(t-1) + 0.5⋅w2(t). We will try 
to make this clearer using a graphical presentation inspired by Hoekstra and van den Berg 
(2002). 
 
Figure 4.1. Additive decomposition of y = x1⋅x2, discrete time 
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The total change in y from period t-1 to period t is equal to the total area bcegha. Different 
index methods have been used to calculate the size of this area. Some of them are represented 
in table 4.1 below. 
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Table 4.1. Index calculations of Δy 
Index Δy = Area Residual 
L-L Δx1⋅x2(t-1) + Δx2⋅x1(t-1) hafg + bcda Δx1⋅Δx2 = adef 
P-P Δx1⋅x2(t) + Δx2⋅x1(t) hdeg + bcef -Δx1⋅Δx2 = -adef 
L-P Δx1⋅x2(t-1) + Δx2⋅x1(t) hafg + bcef 0 
P-L Δx1⋅x2(t) + Δx2⋅x1(t-1) hdeg + bcda 0 
M-E Δx1⋅0.5(x2(t-1)+ x2(t)) + 

Δx2⋅0.5(x1(t-1)+ x1(t)) 
hijg + bckl 0 

Note: L-L (P-P) refers to a calculation where the Laspeyres (Paasche) index is used for the effects of changes in x1 as well as in x2. The L-P 
and P-L are mixed cases where the effects of changes in x1 and in x2 are measured with different indices. M-E refers to the Marshall-
Edgeworth index. 
 
From figure 4.1 and table 4.1 it appears that when the Laspeyres index is used for changes in 
both x1 and x2, then the total change in y is underestimated, because the area adef is not 
accounted for. Conversely, when using the Paasche index the area adef is counted twice and 
the total change is overestimated. The reason that Paasche and Laspeyres indices are oftenly 
used anyway, is that in the case where the relative change is small, i.e. where Δx1 (Δx2) is only 
a small share of x1 (x2) the problem is not as crucial as it appears from figure 4.1. However, 
these cases of over- and underestimation are, what we shall refer to later on as, 
decompositions with a residual. 
 
The residual term appears first of all in decompositions where the Laspeyres or the Paasche 
indicies are applied. It represents the so-called mixed effect that arises from a simultaneous 
change in both components. There are generally two attitudes towards a residual term in the 
equations  
 

• It is unwanted, so the decomposition must be specified in a way that avoids it, using 
other indices than pure Laspeyres and Paasche. The residual term is unwanted if we only 
consider the so-called isolated effects, (Seibel, 2003) where changes in each determinant 
are considered, while all other determinants are being assumed constant. 

  
• It is accepted, and then there are at least three different things to do with it (Seibel, 

2003). Firstly, it can simply be neglected, which leads to an incomplete decomposition. 
This procedure can be justified if the residual is sufficiently small. Secondly, the residual 
can be distributed among the other determinants. Finally, the residual can be explicitly 
considered, so that isolated effects as well as mixed effects are reported. 

 
The emphasis in this report will be on the first type of attitude. So in this situation, an obvious 
solution is to use different indices to measure the effects of the changes in x1 and x2 as it is 
done in the L-P and P-L cases. The residuals are zero because the area adef is counted in both 
cases, but only once. Thus, the decomposition of y is not unique since there are two different 
possible decomposition forms. But the result is unique in the two-determinant case. The two 
decompositions are equivalent and there is no reason why one of them should be preferred to 
the other. 
 
Another strategy is to apply the Marshall-Edgeworth index, which do not give residuals 
either. It should be noted, however, that in this case the area aiml is counted twice and the 
area mkej is not counted. But in this two-dimensional case they will always be exactly the 
same size. So the extra aiml makes up for the missing mkej and they neutralize each other. 
Thus the decomposition gives no residual in this case. 
 
So if we had only two determinants in our decomposition, we could use either one of the 
mixed-index cases or the M-E index and get no residuals. However, most SDA studies will 

-     - 18



incorporate three or more determinants on the right hand side of the equation, and then we 
have a problem. With e.g. the M-E index it is obvious that in a SDA with three or more 
dimensions what is counted more than once will only in very special occasions exactly make 
up for what is not counted. So when the number of determinants is greater than two, this 
method is not complete and it is bound to give residuals. The mixed-index method (a mixture 
of Laspeyres and Paasche indicies) is more promising in the multidimensional case, and we 
shall return to that later. 
 
The problem is the so-called non-uniqueness, which means that there exist a number of 
different decomposition forms and that it cannot be decided which one to prefer to the other 
ones. It seems that in the literature not very much attention has been paid to this problem. In 
Dietzenbacher and Los (1998) it is stated "… for the economically more meaningful 
decompositions with a larger number of determinants, the non-uniqueness problem, it's extent 
and it's implications seem to have been largely neglected". In the literature a variety of most 
often ad-hoc solutions can be found. Lin and Polenske (1995) or Rose and Casler (1998) are 
mixing Lapeyres and Paasche indices to get rid of residuals. Another example is Wier (1998) 
and Jakobsen (2000), which, based on Betts (1989) and Fujimagari (1989), take the mean of 
two decomposition forms, one based on the Lapeyres index and one based the Paasche index. 
The method gives a residual term.  
 
Another line of authors who has a more thorough and systematic approach to this problem is 
Dietzenbacher and Los (1998), de Haan (2001) and Seibel (2003). On the basis of these 
contributions it is possible to derive complete and non-arbitrary decompositions in the n-
dimensional case.  
 

4.3.1 Derivation of estimating equations 
 
The first problem is to write the estimating equations. As the additive decomposition form is 
used we can apply the so-called additive identity splitting to derive the estimating equations. 
It involves the addition and subtraction of like terms and rearranging them in the equation. In 
the case where we have the equation  
 
 ttttt dcbay ⋅⋅⋅=  (6) 
 
Note that the notation has changed in order to make the equations more readable. Now the 
subscript t indicates time, and the determinants are differentiated by their name. The additive 
form is  
 
  dwcwbwawy dcba Δ+Δ+Δ+Δ=Δ
 
Here the w’s with superscripts refers to what we might call coefficients or weights. In 
principle these coefficients could be calculated with econometric methods. But it is also 
possible to derive them with the structural decomposition method. The additive identity 
splitting method is used to get an idea of what the w’s should be: 
 
 
 
 

01 yyy −=Δ  
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 (7) 

 
So now we have a decomposition form, with four terms. Each of the four terms expresses the 
contribution of the Δ-component to the total change in y. In the first term the coefficient 
attached to Δa is b1⋅c1⋅d1, for Δb it is a0⋅c1⋅d1, and so on for Δc and Δd. We notice a pattern, 
where the Δ runs from left to right and all coefficients to the right of the Δ-component are 
counted in the target-year value and all the coefficients to the left of the Δ-component are 
counted in basic year values. This decomposition form is complete, meaning that it has no 
residual. However, this form is not unique. It is just one of many decompositions. The 
derivation of the decomposition equation above arbitrarily assumed that the order of the 
determinants was abcd, but it could just as well have been cadb. If we follow the principles of 
(7) we will have Δc in the first term and Δa in the next and so on. Dietzenbacher and Los 
(1998) show that in the general n-determinants case there is n! different forms4. In this case 
we would have 4!=24 different forms. 
 
The rightmost column of figure 4.2 shows the 24 permutations of the determinants a,b,c and d 
that has been used to generate the 24 equations. All of these n! decompositions give exactly 
the same value of Δy and thus, none of them has a residual. Different coefficients are attached 
to the n components, but the derivation in (7) ensures identical values of Δy and no residuals.  
 
Figure 4.2.  All 24 decompositions of y=abcd 
Δy = Δa*b1*d1*c1  +  a0*Δb*d1*c1  +  a0*b0*Δd*c1  +  a0*b0*d0*Δc ,   a  b  d  c   
Δy = Δa*c1*b1*d1  +  a0*Δc*b1*d1  +  a0*c0*Δb*d1  +  a0*c0*b0*Δd ,   a  c  b  d   
Δy = Δa*c1*d1*b1  +  a0*Δc*d1*b1  +  a0*c0*Δd*b1  +  a0*c0*d0*Δb ,   a  c  d  b   
Δy = Δa*d1*b1*c1  +  a0*Δd*b1*c1  +  a0*d0*Δb*c1  +  a0*d0*b0*Δc ,   a  d  b  c   
Δy = Δa*d1*c1*b1  +  a0*Δd*c1*b1  +  a0*d0*Δc*b1  +  a0*d0*c0*Δb ,   a  d  c  b   
Δy = Δa*b1*c1*d1  +  a0*Δb*c1*d1  +  a0*b0*Δc*d1  +  a0*b0*c0*Δd ,   a  b  c  d   
Δy = Δb*a1*c1*d1  +  b0*Δa*c1*d1  +  b0*a0*Δc*d1  +  b0*a0*c0*Δd ,   b  a  c  d   
Δy = Δb*a1*d1*c1  +  b0*Δa*d1*c1  +  b0*a0*Δd*c1  +  b0*a0*d0*Δc ,   b  a  d  c   
Δy = Δb*c1*a1*d1  +  b0*Δc*a1*d1  +  b0*c0*Δa*d1  +  b0*c0*a0*Δd ,   b  c  a  d   
Δy = Δb*c1*d1*a1  +  b0*Δc*d1*a1  +  b0*c0*Δd*a1  +  b0*c0*d0*Δa ,   b  c  d  a   
Δy = Δb*d1*a1*c1  +  b0*Δd*a1*c1  +  b0*d0*Δa*c1  +  b0*d0*a0*Δc ,   b  d  a  c   
Δy = Δb*d1*c1*a1  +  b0*Δd*c1*a1  +  b0*d0*Δc*a1  +  b0*d0*c0*Δa ,   b  d  c  a   
Δy = Δc*a1*b1*d1  +  c0*Δa*b1*d1  +  c0*a0*Δb*d1  +  c0*a0*b0*Δd ,   c  a  b  d   
Δy = Δc*a1*d1*b1  +  c0*Δa*d1*b1  +  c0*a0*Δd*b1  +  c0*a0*d0*Δb ,   c  a  d  b   
Δy = Δc*b1*a1*d1  +  c0*Δb*a1*d1  +  c0*b0*Δa*d1  +  c0*b0*a0*Δd ,   c  b  a  d   
Δy = Δc*b1*d1*a1  +  c0*Δb*d1*a1  +  c0*b0*Δd*a1  +  c0*b0*d0*Δa ,   c  b  d  a   
Δy = Δc*d1*a1*b1  +  c0*Δd*a1*b1  +  c0*d0*Δa*b1  +  c0*d0*a0*Δb ,   c  d  a  b   
Δy = Δc*d1*b1*a1  +  c0*Δd*b1*a1  +  c0*d0*Δb*a1  +  c0*d0*b0*Δa ,   c  d  b  a   
Δy = Δd*a1*b1*c1  +  d0*Δa*b1*c1  +  d0*a0*Δb*c1  +  d0*a0*b0*Δc ,   d  a  b  c   
Δy = Δd*a1*c1*b1  +  d0*Δa*c1*b1  +  d0*a0*Δc*b1  +  d0*a0*c0*Δb ,   d  a  c  b   
Δy = Δd*b1*a1*c1  +  d0*Δb*a1*c1  +  d0*b0*Δa*c1  +  d0*b0*a0*Δc ,   d  b  a  c   
Δy = Δd*b1*c1*a1  +  d0*Δb*c1*a1  +  d0*b0*Δc*a1  +  d0*b0*c0*Δa ,   d  b  c  a   
Δy = Δd*c1*a1*b1  +  d0*Δc*a1*b1  +  d0*c0*Δa*b1  +  d0*c0*a0*Δb ,   d  c  a  b   
Δy = Δd*c1*b1*a1  +  d0*Δc*b1*a1  +  d0*c0*Δb*a1  +  d0*c0*b0*Δa ,   d  c  b  a   
 
                                                 
4 As noted by de Haan (2001), it has been showed that there exists a lot more than (n!) decomposition form. Thus all equations 

with more than one difference term Δ could be considered too. However, the economic interpretation of those terms is not 
straightforward. 
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But the size of the contribution from Δa, Δb, Δc and Δd differ across the equations. The 
difference in coefficients mean that dependent on which of the n! equations we look at, we 
can see quite different contributions from the same determinant to the change in y. As shown 
in de Haan (2001) (and also later in this report) there can be a huge difference between any of 
the 24 suggestions to what the contribution of one determinant might be and the mean of all 
the 24 suggestions. In other words, the variance can be very large. De Haan reports a variance 
of –60% to +70% with respect to the mean. That is an evidence of how wrong it would be to 
arbitrarily pick just one of the n! equations and calculate the contribution of the n factors to 
the change in y.  
 
Dietzenbacher and Los (1998) suggest that a way to reduce the variance is to look at the mean 
of so-called “mirror images”. Mirror images are pairs of permutations where the time stamp 
on the coefficients attached to each difference term are exactly opposite, like e.g. in line 1 and 
line 24 in figure 4.2 above. The n equations comprise n!/2 such pairs. For the two components 
in such a pair, the deviation from the mean goes in opposite directions. Thus, the mean of the 
two components in a pair are quite close to the overall mean. Actually, de Haan (2001) reports 
deviations of only 0-1% with very few exceptions, as opposed to the –60% to +70% 
mentioned earlier. 
 
Dietzenbacher and Los (1998) suggested an improvement to the polar-case solution. It was to 
calculate the mean of all the n! decomposition forms in figure 4.2. The results of their 
example show that there is substantial variation in the outcome of their 24 decomposition 
forms, just like it was found in de Haan (2001). Their advice is therefore to calculate all n! 
forms and to publish standard deviations together with the means. In order to calculate the 
mean of the four determinants in the example in figure 4.2 above, the equations need to be 
sorted to get the Δ’s of the same determinants put into the same column.  
 
Figure 4.3.  All 24 decompositions of y=abcd, sorted. 
Δy = Δa*b1*c1*d1  +  a0*Δb*c1*d1  +  a0*b0*Δc*d1  +  a0*b0*c0*Δd  ,  a  b  c  d   
Δy = Δa*b1*c1*d1  +  a0*Δb*c1*d1  +  a0*b0*Δc*d0  +  a0*b0*c1*Δd  ,  a  b  d  c   
Δy = Δa*b1*c1*d1  +  a0*Δb*c0*d1  +  a0*b1*Δc*d1  +  a0*b0*c0*Δd  ,  a  c  b  d   
Δy = Δa*b1*c1*d1  +  a0*Δb*c0*d0  +  a0*b1*Δc*d1  +  a0*b1*c0*Δd  ,  a  c  d  b   
Δy = Δa*b1*c1*d1  +  a0*Δb*c0*d1  +  a0*b0*Δc*d0  +  a0*b1*c1*Δd  ,  a  d  b  c   
Δy = Δa*b1*c1*d1  +  a0*Δb*c0*d0  +  a0*b1*Δc*d0  +  a0*b1*c1*Δd  ,  a  d  c  b   
Δy = Δa*b0*c1*d1  +  a1*Δb*c1*d1  +  a0*b0*Δc*d1  +  a0*b0*c0*Δd  ,  b  a  c  d   
Δy = Δa*b0*c1*d1  +  a1*Δb*c1*d1  +  a0*b0*Δc*d0  +  a0*b0*c1*Δd  ,  b  a  d  c   
Δy = Δa*b0*c0*d1  +  a1*Δb*c1*d1  +  a1*b0*Δc*d1  +  a0*b0*c0*Δd  ,  b  c  a  d   
Δy = Δa*b0*c0*d0  +  a1*Δb*c1*d1  +  a1*b0*Δc*d1  +  a1*b0*c0*Δd  ,  b  c  d  a   
Δy = Δa*b0*c1*d0  +  a1*Δb*c1*d1  +  a0*b0*Δc*d0  +  a1*b0*c1*Δd  ,  b  d  a  c   
Δy = Δa*b0*c0*d0  +  a1*Δb*c1*d1  +  a1*b0*Δc*d0  +  a1*b0*c1*Δd  ,  b  d  c  a   
Δy = Δa*b1*c0*d1  +  a0*Δb*c0*d1  +  a1*b1*Δc*d1  +  a0*b0*c0*Δd  ,  c  a  b  d   
Δy = Δa*b1*c0*d1  +  a0*Δb*c0*d0  +  a1*b1*Δc*d1  +  a0*b1*c0*Δd  ,  c  a  d  b   
Δy = Δa*b0*c0*d1  +  a1*Δb*c0*d1  +  a1*b1*Δc*d1  +  a0*b0*c0*Δd  ,  c  b  a  d   
Δy = Δa*b0*c0*d0  +  a1*Δb*c0*d1  +  a1*b1*Δc*d1  +  a1*b0*c0*Δd  ,  c  b  d  a   
Δy = Δa*b1*c0*d0  +  a0*Δb*c0*d0  +  a1*b1*Δc*d1  +  a1*b1*c0*Δd  ,  c  d  a  b   
Δy = Δa*b0*c0*d0  +  a1*Δb*c0*d0  +  a1*b1*Δc*d1  +  a1*b1*c0*Δd  ,  c  d  b  a   
Δy = Δa*b1*c1*d0  +  a0*Δb*c1*d0  +  a0*b0*Δc*d0  +  a1*b1*c1*Δd  ,  d  a  b  c   
Δy = Δa*b1*c1*d0  +  a0*Δb*c0*d0  +  a0*b1*Δc*d0  +  a1*b1*c1*Δd  ,  d  a  c  b   
Δy = Δa*b0*c1*d0  +  a1*Δb*c1*d0  +  a0*b0*Δc*d0  +  a1*b1*c1*Δd  ,  d  b  a  c   
Δy = Δa*b0*c0*d0  +  a1*Δb*c1*d0  +  a1*b0*Δc*d0  +  a1*b1*c1*Δd  ,  d  b  c  a   
Δy = Δa*b1*c0*d0  +  a0*Δb*c0*d0  +  a1*b1*Δc*d0  +  a1*b1*c1*Δd  ,  d  c  a  b   
Δy = Δa*b0*c0*d0  +  a1*Δb*c0*d0  +  a1*b1*Δc*d0  +  a1*b1*c1*Δd  ,  d  c  b  a   
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It is permitted to rearrange the four products in each line, just as it is permitted to rearrange 
the terms inside each of the four products. That will be necessary if we work with vectors and 
matrices that have to come in a certain order because of their different dimensions.  
 
Now all the Δ’s are in the column where they belong. Software code can be generated to 
calculate these equations and to take means and standard deviations on each of the columns. 
However, if we want 6,7 or 8 determinants in the equations, the number of equations will rise 
to 720, 5040 and 40320 respectively, which even for a modern computer can be quite time-
consuming to compute.  
 
But, actually it is not necessary to do so. In order to reduce the number, the first step is to 
accept the fact, that we actually do not need to calculate all the n Δy’s once we have 
convinced ourselves that they are all equal. We only need the means of the n columns. That 
allows us to sort the equations in the vertical direction as well in order to get the result shown 
I figure 4.4. below. Notice that it is no longer possible to calculate Δy in each line. However, 
the total sum of the 24*4=96 terms are still equal to 24*Δy as it can be seen in figure 4.4. 
 
Notice the same pattern in all 4 columns. If we take a closer look at the first column in figure 
4.3.4 we see that many of the coefficients attached to the Δa’s are equal. The coefficient 
b0*c0*d0 appears 6 times just like the coefficient b1*c1*d1 does. Between the 6 identical in the 
top and the bottom there are 6 pairs of equals. 
 
Figure 4.4. All 24 decompositions of y=abcd, sorted vertically and horizontally. 
Δy = 1/24 * [ 
Δa*b0*c0*d0  +  a0*Δb*c0*d0  +  a0*b0*Δc*d0  +  a0*b0*c0*Δd  + 
Δa*b0*c0*d0  +  a0*Δb*c0*d0  +  a0*b0*Δc*d0  +  a0*b0*c0*Δd  + 
Δa*b0*c0*d0  +  a0*Δb*c0*d0  +  a0*b0*Δc*d0  +  a0*b0*c0*Δd  + 
Δa*b0*c0*d0  +  a0*Δb*c0*d0  +  a0*b0*Δc*d0  +  a0*b0*c0*Δd  + 
Δa*b0*c0*d0  +  a0*Δb*c0*d0  +  a0*b0*Δc*d0  +  a0*b0*c0*Δd  + 
Δa*b0*c0*d0  +  a0*Δb*c0*d0  +  a0*b0*Δc*d0  +  a0*b0*c0*Δd  + 
Δa*b0*c0*d1  +  a0*Δb*c0*d1  +  a0*b0*Δc*d1  +  a0*b0*c1*Δd  + 
Δa*b0*c0*d1  +  a0*Δb*c0*d1  +  a0*b0*Δc*d1  +  a0*b0*c1*Δd  + 
Δa*b0*c1*d0  +  a0*Δb*c0*d1  +  a0*b1*Δc*d0  +  a0*b1*c0*Δd  + 
Δa*b0*c1*d0  +  a0*Δb*c1*d0  +  a0*b1*Δc*d0  +  a0*b1*c0*Δd  + 
Δa*b0*c1*d1  +  a0*Δb*c1*d1  +  a0*b1*Δc*d1  +  a0*b1*c1*Δd  + 
Δa*b0*c1*d1  +  a0*Δb*c1*d1  +  a0*b1*Δc*d1  +  a0*b1*c1*Δd  + 
Δa*b1*c0*d0  +  a1*Δb*c0*d0  +  a1*b0*Δc*d0  +  a1*b0*c0*Δd  + 
Δa*b1*c0*d0  +  a1*Δb*c0*d0  +  a1*b0*Δc*d0  +  a1*b0*c0*Δd  + 
Δa*b1*c0*d1  +  a1*Δb*c0*d1  +  a1*b0*Δc*d1  +  a1*b0*c1*Δd  + 
Δa*b1*c0*d1  +  a1*Δb*c0*d1  +  a1*b0*Δc*d1  +  a1*b0*c1*Δd  + 
Δa*b1*c1*d0  +  a1*Δb*c1*d0  +  a1*b1*Δc*d0  +  a1*b1*c0*Δd  + 
Δa*b1*c1*d0  +  a1*Δb*c1*d0  +  a1*b1*Δc*d0  +  a1*b1*c0*Δd  + 
Δa*b1*c1*d1  +  a1*Δb*c1*d1  +  a1*b1*Δc*d1  +  a1*b1*c1*Δd  + 
Δa*b1*c1*d1  +  a1*Δb*c1*d1  +  a1*b1*Δc*d1  +  a1*b1*c1*Δd  + 
Δa*b1*c1*d1  +  a1*Δb*c1*d1  +  a1*b1*Δc*d1  +  a1*b1*c1*Δd  + 
Δa*b1*c1*d1  +  a1*Δb*c1*d1  +  a1*b1*Δc*d1  +  a1*b1*c1*Δd  + 
Δa*b1*c1*d1  +  a1*Δb*c1*d1  +  a1*b1*Δc*d1  +  a1*b1*c1*Δd  + 
Δa*b1*c1*d1  +  a1*Δb*c1*d1  +  a1*b1*Δc*d1  +  a1*b1*c1*Δd  ]  
 
In each column there is n-1 different coefficients. They can have two different time stamps (0 
for basic year and 1 for target year). That leaves us with 2(n-1) different coefficients to attach to 
the Δ−component (2(4-1) = 8 in this example). Thus, in our example, we have only 8 different 
coefficients in a column, instead of the 24 we thought we had. If we take advantage of these 
findings, we can cut down on the number of equations and increase the speed of computation 
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dramatically. The same types of findings are mentioned in de Haan (2001), but it has been 
formalized to apply for any n dimensional decomposition in Seibel (2003). The following 
builds on Seibel (2003) but simplifies the matter even further. 
 
We know now that we must calculate the 2(n-1) coefficients. But, what we do not know is what 
weight should be attached to each of them before we calculate the mean. We can use some 
mathematics to sort that out. The weight is dependent on two things. Besides the number of 
determinants n, it also depends on the distribution between base year values (subscript 0) and 
target year values (subscript 1) in the coefficient. We learned from figure 4.4 that the two 
coefficients that consist of either only subscript 0 values or subscript 1 values are represented 
six times. Actually, if we take a closer look, we can see that also coefficients that consist of 
one subscript 0 value and two subscript 1 values are represented six times. They are just in 
three different forms b0*c0*d1 and b0*c1*d0 and b1*c0*d0.  
 
Now, we let k represent the number of subscript 0 values in a coefficient. So k runs from 0 to 
n-1.  Then, conversely, n-1-k is the number of subscript 1 values in the same coefficient. 
Firstly, we would like to know how many different coefficients there is for each value of k. 
Statistical theory gives the answer. For each k the number of coefficients is 
 

 ( )[ ]!!1
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kkn
n

⋅−−
−  (8) 

 
In our example from above this gives us the results shown in table 4.2 below. We see that 
when we let k run from 0 to 3 the total number of coefficients 1+3+3+1 = 8 equals 2(4-1). Thus, 
there is one way to write the coefficient when k equals zero, 3 different ways when k equals 
one, and when it equals 2. Finally, there is only one way to write it, when k equals three.    
 
The next step is to find out how many times each of these coefficients appear as weight for 
the Δ-term in the n! equations. Our k can have n different values (runs from 0 to n-1), so there 
must be n different types of coefficients, when type is determined by the size of k. They all 
have to be represented an equal number of times among the n! equations. That means that 
each value of k must be represented (n! / n) = (n-1)! times among the n! equations. This 
number must for every value of k be divided between the numbers of different coefficients 
based on this particular k as calculated by (8) 
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In our example the result of (8) and (9) with n=4 gives the following table 
 
Table 4.2. Number of different coefficients and their weights, when n=4. 

 
k 

Number of different 
coefficients for n=4, given 

k 
(n-1)! / [(n-1-k)!⋅k!] 

 
Weight 

(n-1-k)!⋅k! 

0 1 6 
1 3 2 
2 3 2 
3 1 6 
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By multiplying columns 2 and 3 we see that each value of k will be represented 6 times in this 
example.  With this knowledge we can create a matrix of subscripts 0 and 1 for the 2(n-1) 
different coefficients. For our n=4 example it would look like 
 
Table 4.3. Subscripts for the 3 components in the 2(4-1) coefficients 

Subscripts for the 
components in the coefficient 

 
k 

first second third 

 
Weight 

0 0 0 0 6 
0 0 1 2 
0 1 0 2 

 
1 

1 0 0 2 
0 1 1 2 
1 1 0 2 

 
2 

1 0 1 2 
3 1 1 1 6 

 
Now we can use the matrix of subscripts marked as the slightly shaded area in table 4.3 to 
write a new set of equations to replace the ones in figure 4.4 above 
 
Figure 4.5.  Δy calculated as the average of all 24 decompositions represented by 8 
different decompositions of y, with appropriate weights. 
Δy =  1/24 * [ 
{6 ∗ Δa*b0*c0*d0  +  6 ∗ a0*Δb*c0*d0  +  6 ∗ a0*b0*Δc*d0  +  6 ∗ a0*b0*c0*Δd }  + 
{2 ∗ Δa*b0*c0*d1  +  2 ∗ a0*Δb*c0*d1  +  2 ∗ a0*b0*Δc*d1  +  2 ∗ a0*b0*c1*Δd }  + 
{2 ∗ Δa*b0*c1*d0  +  2 ∗ a0*Δb*c0*d1  +  2 ∗ a0*b1*Δc*d0  +  2 ∗ a0*b1*c0*Δd }  + 
{2 ∗ Δa*b1*c0*d0  +  2 ∗ a1*Δb*c0*d0  +  2 ∗ a1*b0*Δc*d0  +  2 ∗ a1*b0*c0*Δd }  + 
{2 ∗ Δa*b0*c1*d1  +  2 ∗ a0*Δb*c1*d1  +  2 ∗ a0*b1*Δc*d1  +  2 ∗ a0*b1*c1*Δd }  + 
{2 ∗ Δa*b1*c1*d0  +  2 ∗ a1*Δb*c1*d0  +  2 ∗ a1*b1*Δc*d0  +  2 ∗ a1*b1*c0*Δd }  + 
{2 ∗ Δa*b1*c0*d1  +  2 ∗ a1*Δb*c0*d1  +  2 ∗ a1*b0*Δc*d1  +  2 ∗ a1*b0*c1*Δd }  + 
{6 ∗ Δa*b1*c1*d1  +  6 ∗ a1*Δb*c1*d1  +  6 ∗ a1*b1*Δc*d1  +  6 ∗ a1*b1*c1*Δd }  ] 
 
Now the final step is to calculate the size of the total contribution from each of the four 
determinants to the total change in y as the average of all 24 decompositions represented by 
the 8 different decompositions of y presented in figure 4.5. To do this, we must look at the 
columns isolated from each other. So the total change in y is equal to  
 
Δy = w1⋅Δa + w2⋅Δb + w3⋅Δc + w4⋅Δd  
 
where  
 
w1⋅Δa = 1/24 ∗ { (6 ∗ Δa*b0*c0*d0) + 
   (2 ∗ Δa*b0*c0*d1) + 
   (2 ∗ Δa*b0*c1*d0) + 
   (2 ∗ Δa*b1*c0*d0) + 
   (2 ∗ Δa*b0*c1*d1) + 
   (2 ∗ Δa*b1*c1*d0) + 
   (2 ∗ Δa*b1*c0*d1) + 
   (6 ∗ Δa*b1*c1*d1)    } 
 
and similarly for the other three columns. Notice that the formulas above covers scalars as 
well as matrices and vectors, so although it would be possible to place Δa outside the 
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parenthesis, it would not make any sense to put Δb outside, because it will probably not be 
possible to do the matrix multiplication a∗c∗d.   
 
It is now reasonably easy to use the framework outlined above to make a decomposition of 
models with 2 to n determinants. The number of necessary decomposition equations is 
reduced from n! to 2(n-1), which for large systems reduces the computational requirements 
dramatically, while exactly preserving the results. 
 

4.4 Conclusion 
 
Structural decomposition analysis has undergone a considerable development in the literature 
during recent years. Theory and methods have been developed in the direction of complete 
decompositions with no residuals and more accurate estimates of contributions from the 
determinants. There are, however, some objections to this method, one of which is the 
question of dependent determinants. It is investigated in Dietzenbacher and Los (2000) how 
dependency between the determinants, which is actually very common, may affect the results 
of a SDA. It is indicated that dependencies may cause a bias in the results in certain SDA 
studies. A new decomposition method that does not suffer from these drawbacks are 
presented, and in a case study of the Dutch economy it is showed that results obtained with 
the new method may differ substantially from results obtained with the more traditional 
method. For future work it would be valuable to take a closer look at this new method. 
However, the method outlined in the pages above, will in spite of this new development be 
used in the empirical part of this paper. 
 

5. Setting up Danish Decomposition Analyses 
 
With the necessary data at hand and the decomposition methodology carefully reviewed, it is 
now possible to derive some models that we can use for the empirical analysis. 
 
The principle behind the derivation is that we have our basic i/o model (3) and we premultiply 
it with a block of energy end environmental matrices and vectors. The overall property of this 
block must be the same as for the vector em_int that were used in equation (4) above. It is 
required that when it is post-multiplied by the model (3) it gives the emissions either as a 
scalar or a vector. So one requirement to the block in general is that it must have emissions as 
the numerator and total output as the denominator. Another requirement is that it must have 
the same row-dimension as the inverted matrix (I - Ag)-1 so they fit together in a matrix 
multiplication. 
 
If we have that A is the outcome of the basic i/o model i.e. normally total output, and the 
vector b is emissions we have that  
 

 A
A
bb ⎟

⎠
⎞

⎜
⎝
⎛=  (10)

  
 
This can be decomposed into more vectors and matrices to the left as long as the basic 
property of (10) still holds 
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We see that the c, d and e variables offset each other in the final result. However they can still 
be valuable determinants in a decomposition analysis and shed some light upon the reasons 
for the observed changes over time in b. 
 
As we have available consistent time series of all data from 1980 to 2001, decomposition has 
been carried out of changes in emissions between 1980 and every single year from 1981 to 
2001 subsequently. So while the base year is kept constant at 1980, the target year gradually 
runs through the entire time span. Doing it this way we get consistent annual time series of 
results, which are ready to be put into graphs. 
 

5.1. Basic model 
 
The basic model that are used for decomposition in this report is the following 
 
       emis = emcoef # emix # enint · summa # (I - Ag)-1 · FDstruct · FDlevel (12) 
          (130×1)       (130×40)     (130×40)      (130×1)       (40×1)            (130×130)             (130×97)           (97×1) 

 
Here the symbol # indicates element-by-element matrix multiplication and the symbol · 
indicates ordinary matrix multiplication. Naturally, the same model can be used for analyses 
of CO2, SO2 or NOx emissions respectively. It just requires that the emis and the emcoef 
variables be updated with information on the pollutant in question. The elements in the 
equation (12) is the following   
 
emis  is a 130×1 vector of total emission of CO2, SO2 and NOx by industry.  
 
emcoef is a 130×40 matrix of emission coefficients for CO2, SO2 and NOx. There is a 

coefficient for the emission from each of the 130 industries of each of the 40 
energy carriers. Dividing the 130×40 emission matrices from the NAMEA system 
by the 130×40 energy consumption matrices in gigajoule creates the emcoef 
matrix. The data for this variable is readily available from 1980 through 2001, 
which holds true for the emix and enint variables as well. 

 
emix is also a 130×40 matrix. It is created by an element-by-element division of the 

matrix of energy consumption by its own row sums. Therefore the row sums of 
the emix matrix are one. It explains the weight with which the 40 energy carriers 
are used by each of the 130 industries. Thus, this matrix registers changes in the 
input of energy towards more or less polluting energy carriers. 

 
enint is a 130×1 vector of energy intensities by industry. A division of the row sums of 

the energy consumption matrix by the total output makes this vector. A change in 
this variable over time indicates to which extent the various industries have been 
able to change the production processes in the direction of more efficient use of it 
energy input. 

 
summa is a 40×1 summation vector, which is necessary to insert, because after 

multiplication of the first three components the dimension of the matrix is 
130×40, which must be 1×130 in order to be compatible with the (I-A)-1 matrix, 
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which is the next in line. It is possible to avoid this summation vector if e.g. the 
emcoef vector is aggregated to 1×40 and the next matrices are transposed. 
However, we have found that there are some differences in the results if such a 
vector is used instead, because aggregation causes loss of detail. In the results of 
the analysis there is no effect from this vector what so ever, because it does not 
change at all over time. Thus it is just a tool in the analysis, not a real determinant. 

 
(I- Ag)-1 is the 130×130 inverted matrix of intermediate deliveries. Notice the superscript g 

as in (3). It indicates that we are dealing with domestically produced intermediate 
input. In some analyses the focus is on global emissions generated by Danish final 
demand, in which case the matrix is A, indicating that domestic and import 
matrices are added together. Such addition is then done for the matrices of 
domestic and imported final demand as well. Please refer to tables 3.1 and 3.2 to 
see that when we multiply the summed coefficient matrices with the level of final 
demand we end up with something more than total output g, namely g+m. 
Normally what is done to circumvent this problem, is to put an extra column 
vector in the final demand matrix, with the value –m. That will secure the original 
value of the row sums to be g. However in this situation it does not really matter, 
so we just keep the total g+m, because it will then gives us the global emissions 
from the Danish final demand. This is only possible, because we have made the 
courageous assumption that final demand goods and services produced abroad are 
produced with exactly the same energy consumption, emission coefficients and 
thus emissions, as if it had been produced in Denmark. Naturally, this assumption 
does not hold, but it is quite difficult to do anything else. But with more and more 
NAMEA tables appearing in the EU countries it should be possible to collect a 
sufficient amount of data to improve this part of the model. Actually, in section 5 
of this report we have a section that looks at emissions generated by electricity 
imported from other Nordic countries. Unfortunately it has not been possible 
within the frames of this project to introduce this new information into the right 
matrices and to see the consequences of it.  

 
 In terms of availability of data for this variable it is limited by the time-lag in 

publication of i/o tables. At this point in time the latest version of i/o tables is 
1999. But, as all the energy and environmental data in this project is published 
through 2001, a lot of effort has been put into a forecast of i/o tables for 2000 and 
2001 as well, in order to facilitate decomposition analyses through 2001. The 
traditional and easiest way to forecast i/o coefficient matrices is to use the latest 
available published tables and forecast them as constants. Initially, such method 
was used in this project, but combined with row and column sums in terms of 
published statistics on macroeconomic aggregates, it would give a quite incredible 
development in many cells in the 2000 and 2001 i/o tables. Therefore it was 
decided to do a full "rAs" balancing of those two years5. 

 
 To do a rAs balancing every column sum and row sum vector in table 3.1 must be 

forecasted in the years 2000 and 2001 as a start. Although some of the aggregated 
numbers have already been published by the national accounts, it can be quite a 
job to get them all at this detailed level. Although the rAs method has its 
limitations, the result of the procedure was quite heartening, and when the new 

                                                 
5 The rAs technique is a so-called biproportional adjustment method for updating and interpretating change in input-output 

accounts. The method generates a new input output coefficients table using a prior year table in conjunction with information 
on the current year row and column sums. It is a mathematical optimisation algorithm, and, as Bacharach (1970) noted, “one 
estimates the unknown matrix as that value which, if realized, would occasion the least ‘surprise’ in view of the prior”. For a 
recent overview of methods for updating input-output matrices, see Jackson and Murray (2002). 
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coefficient matrices were used in the decomposition analyses, the results had no 
obvious data-breaks and seemed more sensible and credible than with the constant 
forecast. 

 
FDstruct is a 130×97 matrix of final demand coefficients. As mentioned previously there 

are 73 groups of private consumption and then also investment, government 
consumption and export. Only from 1993 and onwards we have the 107 groups of 
final demand as indicated by tables 3.1 and 3.2, so those years have been 
aggregated to comply with the earlier years. Changes in the preferences of the 
final consumers will be represented by changes in this matrix. 

 
FDlevel is a 97×1 matrix of the level of final demand. The general growth of the economy 

is quite well represented by this vector. In some studies this vector is converted 
into shares that sum to one, of the total final demand and then a scalar of the total 
final demand is added as the last determinant of the decomposition. 

 
With this equation it is possible to use the decomposition method laid out in the previous 
section to get some interesting results. This decomposition results in a 130Η1 vector. It can 
either be summed over all industries to tell a story about changes in total emissions from 
industries or groups of it can be summed to tell a story about different sectors of the economy 
like agriculture, industry, transport and so on. Both types of results can be seen in section 4.5 
below.  
 

5.2. A final demand variant 
 
Because we are also interested to see what resulted in the observed changes in emissions 
caused by different groups of final demand we have made a slightly different model 
 
     emis = emcoef2 · emix’ # enint' · (I - A)-1 · FDstruct # FDlevel' (13) 
        (1×97)         (1×40)          (130×40)’     (130×1)’       (130×130)          (130×97)              (97×1)’ 

  
where # means element by element multiplicatiopn and ‘ means transpose. Also this model 
can be used for different types of emissions as long as emis and emcoef2 are opdated 
accordingly. All of the variables are the same as in (12), except for  
 
emcoef2  which is a 1×40 aggregated version of emcoef.  
 
The result of this decomposition is a 1×97 vector. Notice in this connection, that it is 
necessary to transpose a number of the variables.  
 
As a test of the consequenses of aggregating before the decomposition analysis the following 
model was was tried as well 
 
     emis = (emcoef # emix # enint · summa )'# (I - A)-1 · FDstruct # FDlevel' (14) 
        (1×97)          (130×40)      (130×40)     (130×1)        (40×1)              (130×130)          (130×97)              (97×1)’ 

 
No new variables are introduced in this model.  The emission coefficient variable is here the 
full 130×40 matrix. A parenthesis is put around the first four variables and this result is 
transposed to a 1×130 vector. Results of these equations can be seen in section 4.5.  
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5.3. Direct emissions from households 
 
The decompositions presented above are only concerned with the indirect emissions caused 
by the final demand by industries, households and the export markets. But actually, there are 
quite significant direct emissions from the households that are not covered by the models 
above.  Total emissions from households are composed in the following way  
 
       emishh = emishhd + emishhid (15) 
 
emishh total  emission from households (could be CO2, SO2 and NOx) 
 
emishhid total indirect emissions (covered by formulas (12) and (13) above) 
 
emishhd total direct emissions. 
 
The indirect emissions by households are the emissions by industries caused by the demand of 
households for produced goods and services. Because the model is based on an i/o model the 
pollution generated by production of input to those industries are also counted and the 
production of input to those who produce input – and so on - are counted as well. These 
emissions are registered under the industries, which generated them. 
 
The direct emissions by households are generated by the use of electricity, gas and heating. 
The CO2, SO2 and NOx generated by this consumption is actually emitted by powerplants and 
district heating facilities, but due to the use of the "gross energy method" these emissions are 
attributed to households because they are the underlying reason for this emission. On top of 
that the direct use of fuel for heating and petrol for private cars are registered on the account 
of households.  
 
The decomposition equation is quite simple when it comes to the direct emissions  
 
    emishh = enconshh' · emixhh ·emcoefhh (16)  
        (1×1)                (5×1)'                (5×40)          (40×1) 

 
Also this model can be used for different types of emissions as long as emishh and emcoefhh 
are updated accordingly. The elements in the equation are the following 
 
emishh A scalar of emissions of either CO2, SO2 or NOx from households. 
 
enconshh Is a 5×1 vector of energy consumption.  The 5 categories of private consumption 

are electricity, gas, fuel, district heating and petrol for private cars. The vector is a 
row sum version of the full 5×40 matrix. Thus, in the model (16) the changes in 
the emissions can be ascribed to the change in the size of the energy consumption 
through this variable. 

 
emixhh Is a 5×40 vector of energymix. The full 5×40 matrix of energy consumption is 

divided by its row sums (which is actually the vector enconshh), so the row-sums 
of emixhh equal 1. This matrix represents the consumption of the 40 energy 
carriers per unit of total energy consumption for each of the 5 categories. So in the 
model (16) the change in emissions can change as a consequence of changes in 
the 5 energy consumption goods divided by 40 energy carriers.   
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emcoefhh This is a 40×1 matrix of emission coefficients calculated as the emissions per 
demanded unit of energy for each of the 40 energy carriers. Through this variable 
the changes in emissions can be ascribed to changes in emission factors. 

 

6. Results 
 
As mentioned previously, total emissions in Denmark encompass the sum of emissions from 
all industries (including indirect emissions from households) and the direct emissions from 
Danish households. Firstly, we take a look at result generated with the decomposition 
equation (12) for all industries.  
 

6.1. Emissions from industries, general results 
 
Figure 6.1. Decomposition of CO2 emissions from all industries 1980 – 2001 
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The bold line in this figure indicates the total change in CO2 emissions in Denmark from all 
industries as compared to the level in 1980. It is striking that in 2001 this line is very close to 
zero indicating that the level of CO2 emissions were almost exactly the same in 2001 as in 
1980. This result covers a tendency to increasing emission from 1980 to 1996 and then a 
sharp decline from 1997 through 2001. As it is very often found in studies like this, the most 
significant determinant in terms of increasing the CO2 emissions, is the level of final demand. 
The isolated effect from final demand is an almost 30 million tonnes increase in CO2 
emissions. The peak in 1996 was due to an extraordinary large export of energy. The only 
other determinant that pulled emissions in an upward direction was “emission coefficients”. It 
means that the emission coefficients connected with the actual combinations of energy use, 
final demand structure and so on, actually caused an increase in emissions by almost 4 million 
tonnes in 2001 compared to 1980. Fortunately, the remaining determinants all pulled 
emissions down. 
 
An environmentally friendly, but relatively small contribution comes from the “structure of 
final demand”. It covers the fact that the composition of final demand has changed in the 
direction of goods and services that generate less emission than the previous compositions 
did.  
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The overall energy intensity in the Danish industries has decreased, meaning that the 
production of one unit of total output generally requires less energy input than it did the year 
before, because of technological development. This, off course, helps to diminish emissions. 
In 2001 a decrease of about 11 million tonnes can be attributed to this effect. This is also a 
very commonly found result in decomposition studies. It is interesting that in the years where 
final demand has little peaks it generates peaks in the energy intensity, probably because old, 
marginal and less efficient power plants come into use and play a bigger role in those years. 
 
Also, the change in “energy mix” from 1980 to 2001 has had a favourable effect on emis-
sions. Thus, the mix or composition of energy input has changed so that less polluting energy 
carriers have constituted an increasingly larger portion of the total energy input throughout the 
period from 1980 to 2001. This is clearly the effect of a gradually heavier reliance on natural 
gas and wind power as opposed to fuel oil and coal. The result of this effect is a decrease in 
2001 compared to 1980 of about 13 million tonnes CO2.  
 
Finally, a decrease of about 7 million tonnes can be ascribed to the “structural change” in the 
Leontief Inverse matrix of input requirements for the industries.  
 
Figure 6.2. Decomposition of SO2 emissions from all industries 1980 – 2001 
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When it comes to SO2 emissions as in figure 6.2 the picture is clearer. The positive effect on 
SO2 emissions from the level of final demand is not at all as dominating as in the case of CO2 
emissions. The isolated effect from final demand level is an increase of about 140,000 tonnes. 
However, all other determinants pull unanimously in the downward direction, thus leading to 
a total decrease in SO2 emissions of about 360,000 tonnes in 2001 compared to 1980. The 
best catalysts for these processes have been changes in emission coefficients and energy mix. 
It might seem that these two determinants are quite dependent and that they might explain part 
of the same effect. However, energy mix covers the extent of change from oil to coal and to 
some extent to natural gas and wind power, which are quite less polluting technologies. 
Conversely, the determinant “emission coefficient” covers the magnitude of change in 
improvements of e.g. sulphur content of the particular energy carriers. So these two 
determinants might seem closely dependent, but it is not necessarily the case. Improvements 
in sulphur content can happen without simultaneous changes in energy mix.   
 
The change in energy intensity has had about the same effect as in the case of CO2, but 
fortunately it is strongly dominated by the two effects mentioned above. 
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Figure 6.3 Decomposition of NOx emissions from all industries 1980 – 2001 
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The picture for NOx emissions is quite similar to the pictures for CO2 and SO2. Actually, it is 
much closer to the CO2 picture than to the SO2 picture. The total emission of NOx from all 
industries has decreased by about 50,000 tonnes between 1980 and 2001.  This is a much 
better outcome than in the CO2 case. This is mainly due to the improvement in emission 
coefficients related to NOx in the energy consumption. A main factor in this development has 
been the introduction of catalytic converters on motor vehicles. From approximately 1990 the 
level of final demand is the only determinant pulling the NOx emissions up. From about 1994 
the determinant pulling most strongly in a downward direction is the emission coefficients, 
but also energy intensity and energy mix helps to decrease emissions.  
 
As one may remember from the methodological discription of the model used for 
decomposition, the results presented above, represent the average of 6! = 720 decomposition 
equations since there are 6 determinants.  In order to see how well the model is doing it is 
obvious to try to find the minimum and the maximum values among the 720 suggestions and 
also to calculate the statistical standard deviations related to the means.  
 
Here the following formula is used to calculate the standard deviation is the following 
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where i runs from 1 to 720, x is the value of the particular determinant and x-bar is the 
average of all 720 suggestions.  Such statistics can be calculated for every year in the analysis. 
The following tables show statistics for each of the three types of pollution analysed above for 
the year 2001 only. 
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Table 6.1. Statistics on decomposition of CO2 emissions, 2001 compared to 1980 
  Emcoef Enmix Enint Input FDstruct FDlevel 
CO2 Min -26.2 -169.1 -125.0 -82.0 -51.5 8.3 
 Max 106.9 -1.4 -1.7 -0.4 -0.4 384.6 
 Mean 3.5 -13.7 -10.7 -6.5 -3.8 29.5 
 Std. dev. 16.0 22.6 18.2 11.2 6.9 51.4 
 
Table 6.2. Statistics on decomposition of SO2 emissions, 2001 compared to 1980 
  Emcoef Enmix Enint Input FDstruct FDlevel 
SO2 Min -3228.6 -2070.9 -783.3 -399.1 -159.6 10.6 
 Max -44.7 -6.7 -3.3 -2.2 8.0 3041.9 
 Mean -275.0 -139.4 -52.4 -25.9 -10.9 133.0 
 Std. dev. 434.7 274.4 105.1 52.7 22.3 385.0 
 
Table 6.3 Statistics on decomposition of NOx emissions, 2001 compared to 1980 
  Emcoef Enmix Enint Input FDstruct FDlevel 
NOx Min -864.6 -530.3 -651.6 -243.6 -189.9 40.8 
 Max -10.9 37.9 -10.7 -5.0 -0.7 1859.5 
 Mean -71.8 -30.8 -50.8 -22.2 -11.5 131.8 
 Std. dev. 116.8 73.2 90.5 35.8 24.5 240.8 
 
 
The sums of the rows of means express the total effects on the emissions in 2001. As a test on 
the validity of the data it is possible to refind those sums in the figures above. The statistics is 
a really good assurance of the danger of just picking one out of the n! decomposition 
equations as a reasonable representative of the actual values. The standard deviation numbers 
show that there is a huge amount of variation among the individual decompositions, and that 
the only way forward is to use some kind of average.   
 

6.2 Emissions from households 
 
Using the model (16) we can analyse emissions from households as the other main group of 
emissions. From the 40 energy carriers 5 groups of special importance for households are 
extracted. They cover the direct emissions by households. The decrease from 1980 to 2001 in 
CO2 emissions directly from Danish households amounted to about 2.5 million tonnes. This is 
actually a larger decrease than from all industries in total. The two determinants "emission 
coefficients" and "energy mix" had close to no influence on this result. Thus, all of the 
decrease in emission has come from a similar decrease in energy consumption in general. Use 
of energy in Danish households has become more efficient since the beginning of the period 
under analysis. 
 
In the two figures below the results for the decomposition of SO2 and NOx emissions are 
shown. As it can be seen SO2 emissions from households have decreased by approximately 
30,000 tonnes which is fine, but not as good a result as for CO2 when compared to the almost 
400,000 tonnes decrease brought about by the industries. The energy mix does not seem to be 
a very effective determinant, but emission coefficients have meant more in the process, 
responsible for about half of the decline in emissions.  Again we can refer to the lowering of 
the sulphur content in coal and fuel oil used to generate electricity and district heating, as the 
main explanation.  Naturally, the decreasing size of the energy consumption has helped 
decrease emissions. 
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Figure 6.4 Decomposition of SO2 emissions from households 1980 - 2001 
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In the case of NOx we see a different story.  
 
Figure 6.5 Decomposition of NOx emissions from households 1980 - 2001 
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The 30,000 tonnes decrease in emissions from households is fully competitive with the 
50,000 tonnes decrease jointly brought about by all Danish industries. The absolute main 
explanation is the decrease in emission coefficients.  Again, one of the primary explanations 
is that catalytic converters on motor vehicles operated by households, have been installed 
since about 1990. The two determinants energy consumption and energy mix mean very little 
in this account. 
 

6.3. Disaggregated results for industries 
 
With the general tendencies from the overall economy represented by industries and 
households in place, we can now turn to results for more disaggregated sectors of the 
economy. In the process of running the decomposition analyses for this report and looking at 
the results, it became clear that the more disaggregated the data are, the larger effects of the 
decomposition analysis. Thus, the more aggregated input data for the decomposition analysis 
is, the more information is lost. Therefore it is preferable to do the analysis on a level as 
detailed as possible, and then aggregate the results.  
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Analyses carried out with the model (12) result in a (130Η1) industry by emission vector, but 
we are not interested in the details of all 130 industries.  Therefore results are aggregated to 
the following groups, which are actually a further aggregation of the BR9 grouping in the 
Danish national accounts. 
 

1. BR9: 1 Agriculture etc.  
(Agriculture, fishery, horticulture, mining and extraction of crude petroleum, natural gas and minerals) 

2. BR9: 2 Manufacturing industries  
(manufacturing industries other than energy supply  BR9: 2) 

3. BR9: 3 Electricity, gas, district heating and water supply  
4. BR9: 6 Transport, storage and communication (ground transportation, air- and water 

transportation etc.) 
5. BR9: 4+5+7+8 Other industries (construction and services) 

 
The largest emissions come from the Electricity, gas, district heating and water supply, group 
number 3, so it is obvious to take a closer look at this group. 
 
Figure 6.6. Decomposition of CO2 emissions from the Electricity, gas, district heating 
and water supply industry 1980 - 2001 
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This graph is quite close to the graph showing CO2 emissions for all industries, because this 
group of industries is responsible for the major part of total emissions from industries. The 
level is just somewhat lower and there small differences between the determinants.  
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Figure 6.7. Decomposition of CO2 emissions from agriculture 1980 - 2001 
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Not in every sector of the economy emissions goes down. As shown in figure 6.7., CO2 
emissions in the sector "Agriculture etc." has gone up. In this case the level of final demand 
pulls a 1,5 million tonnes CO2 from this sector in the period 1980-2001. The best 
counterweight is final demand structure, but it pulls far from enough in the opposite direction. 
If one looks behind this development it is revealed that Agriculture itself is not the big sinner 
here. Extraction of crude petroleum and gas in the North Sea is the generator of this 
development. Input of energy in the production process has increased much faster than output.  
 
This can be seen even more clearly if we take a look at the global emissions generated by 
Danish final demand. 
 
Figure 6.8. Decomposition of global CO2 emissions from agriculture including imports 
1980 - 2001 
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The increase in emissions in 2001 compared to 1980 is not 1,5 millions tonnes now, but 4 
million tonnes.  The level of final demand pulls a little more, but especially the contribution 
from the energy intensity is remarkable.  
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6.4. Final demand  
 
Now let us turn to the other group of decomposition analysis based on equation (13). Here the 
matrices are turned before they are multiplied, so the result is emission by final demand 
component instead of emission by industry.  As an example of the results please take a look at 
the figure below 
 
Figure 6.9. Decomposition of NOx emissions from the transportation services 1980 - 2001 
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Note that until 1995 the development in NOx emissions followed the development in the level 
of final demand very closely, because there was no other influence. However, after that date 
the energy intensity in transportation services has improved quite a lot.  Despite the ever-
increasing final demand level, this improvement has almost managed to bring NOx emissions 
down to the 1980 level. In recent years, also the emission coefficients have helped to bring 
pollution down.  
 

6.5. More results  
 
The decomposition analyses have generated a large amount of graphs, some of which have 
been shown and commented on above. Many other graphs imbued with the same tendencies 
that have been discussed in relation to the graphs above can be obtained by cdontacting the 
author of this paper  
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