August 29, 2003

Vam Dates and G7 Updates

In July 2003, I set out to extend the capability of G7 by enabling it to handle
vectors and matrices of various frequencies. Until now, Vam and the programs that
depend on it handled vectors and matrices only of annual frequency. Because most
intersectoral models that use Inforum software are of annual frequency by nature, this
limitation has not been problematic. My present work requires storage of monthly data,
and so | extended the capability of G7 to create and manage high frequency databanks.
The tools within G7 also now have the capability to manipulate this data. While testing
these new features, | uncovered and fixed a number of existing bugs and added a few new
features. The following pages describe in greater detail the changes | made to G7.

Vam Frequencies

Nearly all of the commands in G7 that depend on Vam have been updated and
tested. With the exception of packed matrix binary files (*.pmx), all existing binary and
text files should be compatible with this version. In all cases, existing dates (e.g. 1975)
may now be replaced by dates in the GDate format (e.g. 1975 for annual dates, 1975.1 for
Quarter 1 1975, 1975.001 for January 1975, and so on). Existing ASCII data files will
have dates like “1975” and so naturally are compatible with the new code. EXxisting G7
“add” files also are compatible, because while G7 commands now work for Vam banks
of high frequencies, they also continue to work with Vam banks of annual frequency.
Hence, all commands should work as expected.

The new code is contained on the Sartoris ftp site (sartoris.umd.edu/horst) in
“G7_files.zip,” the compiled program is in “G7.zip,” and test programs and data are
contained in “data.zip.” Download the files, unzip them, and extract the code and
compiled program to the “G7” directory and the data to the “data” directory. You may
copy the executable program “G7.exe” to your “pdg” directory instead; however, you
first should back up or rename your existing version of G7.exe so that it is not
overwritten.

To examine the capabilities of this version, start G7 with the “g.cfg” file
contained in the “data” directory. You are now ready to follow along with this paper and
to conduct your own trials. Some of the code contained in the “data” directory is
presented here. This data is used by the test file “vt.add” to demonstrate the new
capabilities of G7. The following G7 commands may be found there, and the
corresponding files can be found in the “data” directory.

The test Vam bank is established in “vam.cfg.” Here are a few lines:

vam.cfg for nuclear data from Rust/Rothwell
1975.001 1994.012

#

HREFUEL _ 117 1 0 nuketitles.ttl

Vam Dates and G7 Updates 1 Inforum

August 29, 2003

VMATDAT_ 2 1 0 matin_.ttl
MATIN_ 2 2 0 matin_.ttl matin_.ttl
PMATIN_ 2 2 p matin_.ttl matin_.ttl
VMAKE 117 117 0 nuketitles.ttl nuketitles.ttl
Vector and matrix names are specified with capital letters and a trailing “_". The only

unusual characteristics are the monthly dates at the top of the file; otherwise, this file is
no different than any other Vam configuration file. The file is read and the Vam bank is
created by a “vamcreate” command, the bank is loaded by a “vam” command, and the
bank is assigned as default with a “dvam” command:

vamcreate vam.cfg nukehist
vam nukehist b
dvam b

The bank that has been created is empty; all values are set to zero. The databank is filled

with a variety of commands. “add hrefuel.dat” loads vectors using the “vdata” command
(the data presented here is not complete; the data files contain values to December 1994):

vdata HREFUEL1

1975.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
1976.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.8;
1977.001 672.0 744.0 96.4 0.0 0.0;

vdata HREFUEL2
1980.004 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 93.7 720.0;

Similar lines update the vector with the “vup” command and read additional data with the
“vmatdat” and “fvread” commands:

vup HREFUEL1
75.001 1 2 3;

vmatdat r 1 1 120
1975.001 VMATDAT _
1 11

vmatdat c 1 21 2 0
VMATDAT _ 1975.003 1975.004
34

33 44

fvread VMATDAT_ 1975.005 O

5
55

The “matin” and “matin5” commands load matrix data:

matin MATIN_ 1975.001 1 2 1 2 0
12

Vam Dates and G7 Updates 2 Inforum

August 29, 2003

34

matin5 MATIN_ 1975.005 3 0 2
MATIN_ 1 11112 2221332244

The “pmatin” and “pmatin1” commands do the same for packed matrices:

pmatin PMATIN_ PMATIN_.pmx
1975.001

11

11

21

975.005

NEFE R RPN
H

NNEFRPFPEDN

2

pmatinl PMATIN1_ PMATINL1_.pmx
1975.001

10

02

1975.005

11 0

0 22

Packed matrix binary files are associated with the default VVam file with “pmfile.”
Missing data can be interpolated by the “lint” command:

pmfile PMATINL1_ PMATIN1_.pmx
lint MATIN_
lint PMATIN_

The vectors and matrices can be listed with “listvecs,” graphed with “gr,” “mgr,” “Igr,” or
“sgr,” and displayed with “show,” “type,” or “matty.”

show b.HREFUEL

show b_MATININ_ y 1975.001

show b.PMATIN1_r 1

ty HREFUEL1

matty 1975.001 1993.005
HREFUEL1 HREFUELZ;

Calculations are done in the normal fashion, with starting and stopping points set by
“fdates™:

fdates 1975.001 1980.012

f dd = HREFUEL1

vf HREFUEL1 = 200 + 2* HREFUEL1
vF MATIN_1.1 = 11

vc HREFUEL = HREFUEL*HREFUEL

Vam Dates and G7 Updates 3 Inforum

August 29, 2003

At least most “@”” commands work as expected, as does the regression command:

T lindex3 = @log(INDEX_3)
r HREFUEL1 = HREFUEL2, lindex3

Frequency conversions work for vectors as they do for time series:

fdates 1975.1 1994.1
f temp = @mtoq(INDEX_ 1)

Vectors and matrices are constructed from other vectors and matrices with “vmake,” and
rows and columns can be moved within a matrix with “move”:

vmake VMAKE_(r 1-117) HREFUEL
vmake HREFUEL VMAKE_(r 1)
move MATIN_ up 2 2 1 1975.001

Dynamic and static groups function as usual. Here, the vector “INDEX_" is loaded with
the “load” command. Column 1, specified by a dynamic group, is guided by the time
series “t” using the “index” command; “index” also works on full and packed matrices,
and a vector or matrix may be used in place of the time series “t.”

group 1
load INDEX
index 1975.001 t :

A time series may be used to control the total of a vector; here, “t” is used to control the
total of vector “INDEX _,” and the results are stored with “store”:

ctrl t INDEX_ 1
store

Diagonal elements of either a full or packed matrix may be extracted with the
“diagextract” command and inserted with the “diaginsert” command. “getsum” puts the
row or column sum of a full or packed matrix into a vector. “coef” converts a flow
matrix to a coefficient matrix, and flow converts a coefficient matrix to a flow matrix.

getsum MATIN_ r INDEX_
getsum PMATIN_ c INDEX_
coef MATIN_ INDEX_ 1975.001
coef PMATIN_ INDEX_ 1975.001
Fflow MATIN_ INDEX_ 1975.001
flow PMATIN_ INDEX_ 1975.001

Similarly, “rowscale” is used to scale the rows of a matrix, and “scale” is used to scale a
vector or a matrix row or column.

rowscale MATIN_ INDEX vy
rowscale PMATIN_ INDEX_ vy
scale t INDEX_ (1) 1975.001

Vam Dates and G7 Updates 4 Inforum

August 29, 2003

scale t MATIN_ r 1 1975.001 r

“ras,” “rdras,” and “psras” are used to balance full and packed matrices:

ras MATIN_ INDEX_ INDEX_ 1975.001 r
ras PMATIN_ INDEX_ INDEX_ 1975.001 c
rdras MATIN_ INDEX_ INDEX_ 1975.001 c
rdras PMATIN_ INDEX_ INDEX_ 1975.001 r
psras MATIN_ INDEX_ INDEX_ 1975.001 r
psras PMATIN_ INDEX_ INDEX_ 1975.001 r

After a Vam bank has been created, it may be necessary to store the data as text. The
commands “pmpunch” and “punch5” print full and packed matrices, and “punchvec”
prints vectors.

pmpunch pmpunchf.out b.MATIN_ 2

pmpunch pmpunch.out b_PMATIN_ 2

punch5 punch5f_out b_MATIN

punch5 punch5p.out b_.PMATIN_

punchvec index.out b.INDEX_ 1975.001 1975.005

Several other commands also have been tested, and some (e.g. “monup”) still have not
been updated or tested at high frequencies. While problems undoubtedly remain, this
version of G7 now is ready for testing on real modeling problems. The existing version
of G7 contained a number of bugs. Many turned up in the present work; most of them
have been fixed and are presented here.

New Features

The new capabilities center on the “dos” command for executing system
commands from within G7. First, the G7 “dos” command, which passes a command to
the operating system, has proven troublesome because the DOS window closes before the
user can see the results of the operation. These results now are displayed in the G7
output window. For example, suppose the G7 user wanted to copy the workspace bank to
another file. This can be done with “dos copy ws.* newbank.*”. Before, when the
command was executed in G7, a DOS window opened, the operating system tried to
execute “copy ws.* newbank.*”, and the window closed before the user could determine
the success of the operation. Now, the results reported by the operating system are
copied to the G7 output window.

Second, the “dos” command now can execute a series of commands as in a DOS
batch file. To execute commands in batch mode, simply append a “{* to the “dos”
command, followed by the DOS script, and end with a “}”. Arguments can be passed to
the “batch file” by giving the “args” command followed by the arguments. For example,

dos{args 1 2 It _works!
rem THIS IS A TEST

it "%2" == ""2" copy ws.* newws.*
if "%1l" == "1" echo "%3"
he

Vam Dates and G7 Updates 5 Inforum

August 29, 2003

will create a batch file containing the lines beginning with “rem” and “if”, and then this
file will be executed with the options “1 2 It_works!”. These lines will be echoed on the
G7 output screen (if “addprint” is on), followed by the DOS results:

C:\> rem THIS IS A TEST

C:\>if "2" == "2" copy ws.* newws.*
ws . bnk
ws.ind

2 file(s) copied.

C:\>if "1" == "1" echo "It _works!"
"1t _works!"

Of course, multiple lines can be executed without arguments, and single arguments
still can be called with “dos” and no brackets. Note that results now will be displayed
on the G7 output screen but not in the DOS window; this output is not displayed in
the G7 window until the DOS command is finished. To work interactively in DOS,
give the command “dos” with nothing following it; this opens a DOS window in
which you can work.

Bug Fixes

Some bugs exist in G7; many have been fixed in the present work, a few have
been detected but not fixed, and surely others remain undetected. Fortunately, many of
the problems noted here are “int versus short” problems, problems with the use of
“delete,” and problems with pointers.

Many packed matrix commands failed because of confusion between the types
“short” and “int.” In earlier generations of computers (16 bit machines), integers (int’s)
were stored in two bytes (16 bits) of memory. When 32 bit machines became available,
compilers began to allocate 4 bytes (32 bits) of memory for each “int.” A new type of
variable, the two byte “short,” was introduced to replace the original (two byte) “int.”
Generally, this is not a problem for new programs, but it can cause confusion for
programmers who try to update code written for 16 bit machines to run on 32 bit
machines. A few such problems existed in G7. Packed matrix headers (“pmfid”
structures) contain data such as the number of rows and columns; these data are stored as
“short” integers. Packed matrices were created properly and stored as binary files. The
problems arose when the binary files were read. Many times, lines such as the following
were specified:

pmfid pmh;
int *prnc;

%read(&pmh, sizeof(pmh), 1, fin);
if((prnc = new int[j])==0) goto memerr;
fread(prnc, 2, row, fin);

Vam Dates and G7 Updates 6 Inforum

August 29, 2003

The problem is that the “prnc” is an array of four-byte “ints” but the “fread” function is
reading two bytes at a time. Hence, the two bytes are put into the FIRST two (from the
left) bytes of the “int” instead of the LAST two. The result is that the first value of
“prnc” is off by about 65,000 and the remaining values are garbage. The problem is fixed
by making “prnc” an array of shorts.

A second category of problems is even more prevalent. While the problems
above often cause G7 commands to fail completely, improper use of “delete” and
“delete[]” cause memory leaks and other subtle problems. There were and are many
variations of these problems in G7; some such occurrences have been fixed, but others
remain.

When a “new” operator is used, it always should be followed with “delete” or
“delete[].” Note that “delete” and “delete[]” are used ONLY with memory that has been
allocated dynamically (with “new”). | found one or two cases in G7 like the following:

int some_ints[10];

delete some_ints;

Usually, the compiler will complain about such things, but for some reason it did not
complain about those lines. | have no idea what happens when such code gets by the
compiler, but this is very bad code.

Failure to call “delete” or “delete[]” can result in memory leaks. Leaks are most
likely to occur when “new” is used to create a single instance or an array of objects.
“delete” must be called to free a single object (including built-in data types like “int” and
“float”) that has been created dynamically, and “delete[]” must be called to free an array.
Both “delete” and “delete[]” call the object’s destructor. Common problems are the
omission of these operators or the use of “delete” instead of “delete[];” these are not the
same! Another problem is the failure to free all rows of a matrix; a loop is needed to free
each row by calling “delete[] row][i]” and then another “delete[]” is needed to free the
array of pointers. Finally, pointers should be initialized to zero and reset to zero
immediately after they are freed. Calls to “delete” or “delete[]” then are as follows:

int *some_ints = 0;
some_ints = new int[10];

if(some_ints) delete[] some_ints;
some_ints = 0O;

The “ctrl” command in G7 failed because an array was initialized improperly. The
problem was like this:

int int_array[a class::a_constant];
for(int 1=0; i1<500; i++) int_array[i] = 0;

Vam Dates and G7 Updates 7 Inforum

August 29, 2003

The constant probably was 500 originally but it later was increased to 1000; as a result,
only half of the array was initialized to zero. A better way to initialize arrays, which will
avoid this problem and probably is faster, is as follows:

int int_array[a class::a _constant] = {0};
char char_array[500] = {“\0’};
float *fptr[10] = {0};

This does not work for dynamic arrays and it initializes the entire array to a single
specified constant, but it is tidy, fast, and reliable.

If “delete” or “free()” is called for an array that has not been initialized (the
pointer points to garbage), or if “fclose()” is called for a file that is not open, the program
will crash, or at least the operating system will report an error. This can be avoided by
initializing all pointers to zero, and by checking pointers nonzero values before calling
commands like “delete,” “free(),” and “fclose();” following these commands, the pointers
should be reset to zero. These comments also apply to pointers to objects and to
destructors. | have initialized many pointers in G7 to zero, though there remains work to
be done. In all cases, before “delete,” “delete[],” “free(),” “fclose(),” or the Numerical
Recipes-style functions (e.g. free_matrix()) are called, the corresponding pointer is
checked for a nonzero value; following the call, the pointer is set to zero. The “show”
command, for example, failed frequently because of such problems; the “vt.add” program
described above has run much more reliably since | made the changes to “show.” Some
pointers are not initialized yet to zero. In particular, pointers declared in header files
must be initialized in the class constructor; this has not been done yet. Also, pointers to
objects still must be initialized to zero and checked for nonzero values before destructors
are called.

“lint” failed for packed matrices because of a problem with an “if()” statement;
first, IsZero() was called for an array element, and then the array index was checked.
“if()” arguments are read from left to right; first, the array index must be checked, and if
it is valid, then call “IsZero().”

The statement “vc VECTOR_ = 2” returned an error message reporting that
vector VECTOR_ was too short; the problem has been fixed.

There remain problems with the “group” and associated commands. The
statements
group First
1-2
seem to work if there is no groups.bin file in the directory. If the commands are executed
and G7 is restarted, the command fails. Use the command cautiously; if the command

fails, try using dynamic groups.

Several G7 commands to store vectors and matrices as ASCII files did not work.
“pmpunch” often used the wrong string in function calls (i.e. with the bank letter
remaining; e.g. “b.vorm” instead of “vorm”). It also failed to append a *;”to the end of

Vam Dates and G7 Updates 8 Inforum

August 29, 2003

each section of data; when the file was read, the read command failed because it did not
stop reading when it reached the end of the data; instead, it started to read the next
command and failed. Also, the written commands that precede the data were not given
properly and also caused failure. These and other problems were fixed for “pmpunch”
and similar commands.

The command for reading matrices “matin5” lacked code to read the optional
width, decimal, and index width parameters. The parameters were hard coded and the
command failed for data printed with any other values; these defaults differed from the
defaults in the write commands. Similarly, “pras” failed to read the “coltots,” “rowtots,”
“year,” and “r|c” parameters. “move” failed to append *“.pmx” to the name of a packed
matrix, and hence it could not open the packed matrix binary files. Many commands
require either the inclusion or exclusion of the data bank for each vector or matrix (e.g.
either “b.vec” or “vec”); while this is troublesome for users of G7, | did not extend such
code to handle both.

“rowscale” has been updated for use with high frequency Vam files. In addition,
several problems with its use with packed matrices (the “pmxrow1” function) have been
fixed. One such problem arose from the mixing of arrays and vectors; the array indexes
begin at zero, and the vector indexes begin at one. Unfortunately, the author forgot about
this. There remains a note from the author stating that the code was not tested. Although
I fixed some problems, the output for packed matrices still does not seem to be correct. |
therefore disabled the call from “rowscale” to “pmxrow1;” when “rowscale” is called for
a packed matrix, a warning is given but nothing else happens. The output of “psras”
when used with packed matrices also is suspect, but I did not disable the command; the
results should be verified or the command disabled.

Once again, “matty” and “gridty” failed to work (1 first reported the problem
several years ago, and | think it had been fixed). | think it now is functioning properly,
but additional testing is necessary. The character arrays in the Vam class that hold the
filenames for titles were of length 30; this proved insufficient for long titles and for paths,
and so | tripled the lengths of strings that may be read. Unfortunately, only 30 characters
can be stored if compatibility with older versions of Vam is to be maintained. Therefore,
if the string lengths exceed 30, a warning is given and the strings are truncated. Also, the
Vam constructor did not close the “vam.cfg” file. There is a “punchvec” command in
this version of G7 but no “vp” command,; | did not fix this problem. Titles in *show”
were not displayed properly; the problem was fixed by replacing ‘\r’ and “\n’ in each
character array with “\0’. The command to print equations, “ipch,” failed to print extra
parameters when given the “extra” option; this too has been fixed.

Notes for Future Work

G7 continues to use a version of “getint()” and “getfloat()” similar to versions that
failed disastrously in Interdyme. The Interdyme version of “getfloat()” returned a zero
when reading “the 1.23”. It interpreted the “e” as the beginning of a number in scientific
notation, and “atof(“e\0”")” seems to return a zero. | replaced the Interdyme routines with
versions that (hopefully) are much more capable. The existing routines in G7 claim to

Vam Dates and G7 Updates 9 Inforum

August 29, 2003

handle scientific notation properly, and | know of no problems with them. On the other
hand, | have not examined them closely, and similar routines were not reliable. Perhaps
the existing routines should be replaced by those in Interdyme. The Interdyme routines
also should be reviewed. At present, they skip garbage (including digits) until they find a
number that they recognize or the end of the file. At some point, it seems, the routine
instead should give up and present a warning.

As was mentioned above, there remains additional work with pointers if we are to
rid the G7 experience of the annoying access violations and similar problems. However,
much already has been done and there now are fewer such problems.

Finally, while existing G7 code and data files are compatible with this version,
binary packed matrix data (*.pmx) created by older versions of G cannot be read. The
problem is that older versions of the packed matrix class store dates as shorts, which
require two bytes of memory. The GDates class stores dates a floats, which require four
bytes of memory. Fortunately, Vam already stored dates as floats even though it stored
only whole numbers (annual data), and so older binary VVam files should be compatible.
Unfortunately, there probably is no way to cram four bytes worth of data into two bytes,
and so the shorts have been replaced with floats in the packed matrix class. Hence,
packed matrices binaries (even of annual frequency) created by the new version cannot
be read by the old, and vice versa. (The old cannot be read by the new because
“sizeof(pmfid)” now is larger, and so “fread()” would read too much data. Also, the calls
to “fread()” for each date must now read four bytes instead of two. If incompatibility
presents a serious problem, some clever work might enable G7 to recognize the version
that created the binary file and adjust the calls to “fread()” accordingly.)

Conclusions

Hopefully, these and other bug fixes will make G7 more reliable and usable. The
additional capabilities of Vam begin to make possible new types of models. Before high
frequency interindustry models can be built, however, more work must be done. For
example, 1dBuild must be updated to translate G7 code into C++ code. MacFixer and
Fixer must be updated to provide fixes at high frequencies. Finally, the Interdyme classes
also must be updated for use with high frequency data, and Compare might need to be
modified to display the results of these models.

My own work requires that | begin immediately to update several Interdyme
classes. Completion of the other work will wait until my own work requires it, until
someone else assumes the responsibility, or until demand drives me to finish it (which |
will be happy to do).

Please let me know if you have any questions or comments. | value especially
your evaluations of the changes | made and of your experiences with them.

Vam Dates and G7 Updates 10 Inforum

August 29, 2003

Ron Horst

Inforum
horst@econ.bsos.umd.edu
horst@inforum.umd.edu

Vam Dates and G7 Updates 11 Inforum

mailto:horst@econ.bsos.umd.edu
mailto:horst@inforum.umd.edu

	Vam Frequencies
	New Features
	Bug Fixes
	Conclusions

